Accueil | << 1 >> |
![]() |
Goikoetxea, A., Sadoul, B., Blondeau-Bidet, E., Aerts, J., Blanc, M. - O., Parrinello, H., et al. (2021). Genetic pathways underpinning hormonal stress responses in fish exposed to short- and long-term warm ocean temperatures. Ecological Indicators, 120, 106937.
Résumé: Changes in ocean water temperature associated with global climate change are bound to enormously affect fish populations, with potential major economic consequences in the aquaculture and fisheries industries. A link between temperature fluctuations and changes in fish stress response is well established. In this study, we aimed to assess the effects of a short- (4 days) or a long-term (4 months) exposure to warm temperature in the stress physiology of European sea bass (Dicentrarchus labrax) larvae and juveniles. First, cortisol (i.e. the main stress hormone in fishes) analysis was used to confirm that a steady and short-term elevation of temperature acts as a physiological stressful event in these fish, and cortisol release is indeed above a metabolic increase linked to temperature. Moreover, our results verified that measurement of cortisol released into the water can be reliably employed as a non-invasive indicator of acute thermal stress in experimental conditions. Secondly, the different effects on the genetic cascade underlying the stress response between long-term low or high thermal treatments were evaluated at two larval development stages via candidate-gene and whole-transcriptome approaches. Interestingly, opposite expression for some key stress genes (nr3c1, nr3c2 and hsd11b2) were observed between developmental stages, highlighting the distinct adaptive mechanisms controlling the primary and secondary responses to a stressor. Surprising expression patterns for some understudied genes involved in the stress axis were also revealed, including crhr1, mc2r, mc5r, trh or trhr, which should be further explored. Finally, evaluation of cortisol content in scales was successfully used as a biomarker of chronic thermal stress, with 10x more cortisol in fish kept at 21 °C vs 16 °C after 4 months, supporting the gene expression results observed. The use of such a method as a proxy of long-term stress, unprecedented in the literature, holds a vast array of applications in further research, in particular, in the investigation of the impact of global warming on wild fish populations.
Mots-Clés: Commercial fish; Cortisol; Glucocorticoid receptors; Scales; Transcriptomics
|
Zarski, D., Nguyen, T., Le Cam, A., Montfort, J., Dutto, G., Vidal, M. O., et al. (2017). Transcriptomic Profiling of Egg Quality in Sea Bass (Dicentrarchus labrax) Sheds Light on Genes Involved in Ubiquitination and Translation. Mar. Biotechnol., 19(1), 102–115.
Résumé: Variable and low egg quality is a major limiting factor for the development of efficient aquaculture production. This stems from limited knowledge on the mechanisms underlying egg quality in cultured fish. Molecular analyses, such as transcriptomic studies, are valuable tools to identify the most important processes modulating egg quality. However, very few studies have been devoted to this aspect so far. Within this study, the microarray-based transcriptomic analysis of eggs (of different quality) of sea bass (Dicentrarchus labrax) was performed. An Agilent oligo microarray experiment was performed on labelled mRNA extracted from 16 batches of eggs (each batch obtained from a different female) of sea bass, in which over 24,000 published probe arrays were used. We identified 39 differentially expressed genes exhibiting a differential expression between the groups of low (fertilization rate < 60 %) and high (fertilization rate > 60 %) quality. The mRNA levels of eight genes were further analyzed by quantitative PCR. Seven genes were confirmed by qPCR to be differentially expressed in eggs of low and high quality. This study confirmed the importance of some of the genes already reported to be potential molecular quality indicators (mainly rnf213 and irf7), but we also found new genes (mainly usp5, mem-prot, plec, cenpf), which had not yet been reported to be quality-dependent in fish. These results suggest the importance of genes involved in several important processes, such as protein ubiquitination, translation, DNA repair, and cell structure and architecture; these probably being the mechanisms that contribute to egg developmental competence in sea bass.
|