Accueil | << 1 >> |
![]() |
Amemou, H., Kone, V., Aman, A., & Lett, C. (2020). Assessment of a Lagrangian model using trajectories of oceanographic drifters and fishing devices in the Tropical Atlantic Ocean. Prog. Oceanogr., 188, 102426.
Résumé: In the Tropical Atlantic Ocean, we assessed the accuracy of a Lagrangian model (Ichthyop) forced with velocity fields from a hydrodynamical model (CROCO) and two different remote sensing products (GlobCurrent and OSCAR) using trajectories of oceanographic drifters. Additionally, we evaluated the possibility to expand the drifters data using trajectories of GPS-buoy equipped drifting Fish Aggregating Devices (FADs). The observed and simulated trajectories were compared in terms of spatial distribution, velocity distribution and a nondimensional skill score. For the drifters and FADs, the GlobCurrent and OSCAR products lead to similar performances as the CROCO model-ouputs in the broad studied domain. In the Gulf of Guinea, however, the CROCO model performed significantly better than the other two because the parent solution of CROCO benefited from its communication with a child grid of finer resolution in this region. On average, the simulations lead to an underestimation of the drifter and FAD velocities, likely because the spatial resolutions of the forcing products were insufficient and the time frequency at which they were produced were too low to resolve the relevant oceanic processes properly. We found a low skill for all models to simulate FAD trajectories, possibly because of the devices vertical structure that prevent FADs from drifting like water parcels. Our results therefore suggest that in the Tropical Atlantic the FAD dataset may not be appropriate to use for corroborating Lagrangian simulations.
|
De Wit, R., Rey-Valette, H., Balavoine, J., Ouisse, V., & Lifran, R. (2017). Restoration ecology of coastal lagoons: new methods for the prediction of ecological trajectories and economic valuation. Aquatic Conserv: Mar. Freshw. Ecosyst., 27(1), 137–157.
Résumé: * Conservation of the seven lagoons of the Palavas complex (southern France) has been severely impaired by nutrient over-enrichment during at least four decades. The effluents of the Montpellier wastewater treatment plant (WWTP) represented the main nutrient input. To improve the water quality of these lagoons, this WWTP was renovated and upgraded and, since the end of 2005, its effluents have been discharged 11 km offshore into the Mediterranean (total investment €150 M). * Possibilities of ecosystem restoration as part of a conservation programme were explored by a focus group of experts. Their tasks were: (i) to evaluate the impact of the reduction of the nutrient input; (ii) if necessary, to design additional measures for an active restoration programme; and (iii) to predict ecosystem trajectories for the different cases. Extension of Magnoliophyta meadows can be taken as a proxy for ecosystem restoration as they favour the increase of several fish (seahorse) and bird (ducks, swans, herons) species, albeit they represent a trade-off for greater flamingos. Additional measures for active ecosystem restoration were only recommended for the most impaired lagoon Méjean, while the least impaired lagoon Ingril is already on a trajectory of spontaneous recovery. * A multiple contingent valuation considering four different management options for the Méjean lagoon was used in a pilot study based on face-to-face interviews with 159 respondents. Three levels of ecosystem restoration were expressed in terms of recovery of Magnoliophyta meadows, including their impact on emblematic fish and avifauna. These were combined with different options for access (status quo, increasing access, increasing access with measures to reduce disturbance). The results show a willingness of local populations to pay per year about €25 for the highest level of ecological restoration, while they were only willing to allocate about €5 for additional footpaths and hides.
Copyright © 2015 John Wiley & Sons, Ltd. |
Fablet, R., Chaigneau, A., & Bertrand, S. (2014). Multiscale analysis of geometric planar deformations : application to wild animal electronic tracking and satellite ocean observation data. Ieee Transactions on Geoscience and Remote Sensing, 52(6), 3627–3636.
Résumé: The development of animal tracking technologies (including GPS and ARGOS satellite systems) and the increasing resolution of remote-sensing observations call for tools extracting and describing the geometric patterns along a track or within an image over a wide range of spatial scales. Whereas shape analysis has largely been addressed over the last decades, the multiscale analysis of the geometry of opened planar curves has received little attention. We here show that classical multiscale techniques cannot properly address this issue and propose an original wavelet-based scheme. To highlight the generic nature of our multiscale wavelet technique, we report applications to two different observation data sets, namely, wild animal movement paths recorded by electronic tags and satellite observations of sea-surface geophysical fields.
|
Walker, E., & Bez, N. (2010). A pioneer validation of a state-space model of vessel trajectories (VMS) with observers' data. Ecological Modelling, 221, 2008–2017.
Résumé: In the context of the expansion of animal tracking and bio-logging, state-space models have been developed with the objective to characterise animals' trajectories and to understand the factors controlling their behaviour. In the fisheries community, the electronic tagging of vessels commonly designated by Vessel Monitoring Systems (VMS) is developing and provides a new insight for the understanding, the analysis and the modelling of the trajectories of vessels and their prospecting behaviour. VMS data are thus a clue for the proper definition of fishing effort which remains a fundamental parameter of tuna stock assessments. In this context, we used the VMS (recording of hourly positions) of the French tropical tuna purse-seiners operating in the Indian Ocean to characterise three types of movement (states) on the VMS trajectories (stillness, tracking, and cruising). Based on empirical evidences, and on the regular frequency of VMS acquisition, this was achieved by the development of a Bayesian Hidden Markov model for the speeds and turning angles derived from the hourly steps of the trajectories. In a second phase, states were related to activities disentangling stillness into fishing or stop at sea. Finally the quality of the model performances was rigorously quantified thanks to observers' data. Confronting model prediction and true activities allowed estimating that 10% of the hourly steps were misclassified. The assumptions and model' choices are discussed, highlighting the fact that VMS data and observers' data having different time resolutions, the effective use of validating data was troublesome. However, without validation, these analyses remain speculative. The validation part of this work represents an important step for the operational use of state-space models in ecology in the broad sense (predators' tracking data, e.g. birds or mammals trajectories).
Mots-Clés: Bayes; data; Markov; model; Monitoring; Observers'; purse-seiners; state-space; Systems; Trajectory; Tropical; tuna; Validation; Vessel; (Vms)
|