Accueil | << 1 2 3 4 5 6 >> |
![]() |
Lefevre, S., Mckenzie, D. J., & Nilsson, G. E. (2017). Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Glob. Change Biol., 23(9), 3449–3459.
Résumé: Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists.
Mots-Clés: aerobic scope; coryphaena-hippurus; energy-demand teleosts; gadus-morhua l; gill surface area; growth; makaira-nigricans; marlin tetrapturus-albidus; metabolism; metabolism-size relationship; oxygen consumption; oxygen-consumption; ram ventilation; Respiration; scaling; swimming performance; tuna katsuwonus-pelamis
|
Leprieur, F., Colosio, S., Descombes, P., Parravicini, V., Kulbicki, M., Cowman, P. F., et al. (2016). Historical and contemporary determinants of global phylogenetic structure in tropical reef fish faunas. Ecography, 39(9), 825–835.
Résumé: Identifying the main determinants of tropical marine biodiversity is essential for devising appropriate conservation measures mitigating the ongoing degradation of coral reef habitats. Based on a gridded distribution database and phylogenetic information, we compared the phylogenetic structure of assemblages for three tropical reef fish families (Labridae: wrasses, Pomacentridae: damselfishes and Chaetodontidae: butterflyfishes) using the net relatedness (NRI) and nearest taxon (NTI) indices. We then related these indices to contemporary and historical environmental conditions of coral reefs using spatial regression analyses. Higher levels of phylogenetic clustering were found for fish assemblages in the Indo-Australian Archipelago (IAA), and more particularly when considering the NTI index. The phylogenetic structure of the Pomacentridae, and to a lower extent of the Chaeotodontidae and Labridae, was primarily associated with the location of refugia during the Quaternary period. Phylogenetic clustering in the IAA may partly result from vicariance events associated with coral reef fragmentation during the glacial periods of the Quaternary. Variation in the patterns among fish families further suggest that dispersal abilities may have interacted with past habitat availability in shaping the phylogenetic structure of tropical reef fish assemblages.
|
Lorin-Nebel, C., Avarre, J. C., Faivre, N., Wallon, S., Charmantier, G., & Durand, J. D. (2012). Osmoregulatory strategies in natural populations of the black-chinned tilapia Sarotherodon melanotheron exposed to extreme salinities in West African estuaries. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol., 182(6), 771–780.
Résumé: The effect of salinity was studied in natural populations of the black-chinned tilapia (Sarotherodon melanotheron) from West Africa. This euryhaline species colonizes nearly all coastal environments from bays to lagoons characterized by salinities ranging from fresh water to hypersaline water over 100 aEuro degrees. Individuals were sampled during the dry season at several locations characterized by different levels of salinity (3-102 aEuro degrees). Their osmotic status and their gills were analyzed. The branchial mitochondria-rich cells (MRC), localized at the basis of the filaments and along the lamellae in fish taken from the saline stations, showed a wide plasticity with significant differences in their number and size. The most striking results were a significant larger area (a parts per thousand 3x) and a higher number (a parts per thousand 55x) of MRC at high salinity (102 aEuro degrees) compared to low salinity (3 aEuro degrees). The major ion transporters and channels were localized by immunocytochemistry and different expression patterns have been recorded between stations. Despite an increased Na+/K+-ATPase (NKA) alpha-subunit expression and NKA activity, pointing to an increased monovalent ion excretion, a severe osmotic imbalance was recorded in animals living in hypersaline environments.
Mots-Clés: ATPase; Gills; Hypersalinity; Na+/ K+; Osmoregulation; Teleost; Tilapia; cichlidae; expression; fish; gambia; gill; life-history traits; pisces; saloum estuaries; water
|
Marras, S., Killen, S. S., Claireaux, G., Domenici, P., & McKenzie, D. J. (2011). Behavioural and kinematic components of the fast-start escape response in fish: individual variation and temporal repeatability. J. Exp. Biol., 214(18), 3102–3110.
Résumé: Inter-individual variation in physiological performance traits, which is stable over time, can be of potential ecological and evolutionary significance. The fish escape response is interesting in this regard because it is a performance trait for which inter-individual variation may determine individual survival. The temporal stability of such variation is, however, largely unexplored. We quantified individual variation of various components of the escape response in a population of European sea bass (Dicentrarchus labrax), considering both non-locomotor (responsiveness and latency) and locomotor (speed, acceleration, turning rate, turning angle and distance travelled in a fixed time, D(esc)) variables. We assessed whether variation in performance was temporally stable and we searched for any trade-offs among the components of the response that might explain why the variation persisted in the population. The coefficient of variation was high for all components, from 23% for turning rate to 41% for D(esc), highlighting the non-stereotypic nature of the response. Individual performance for all variables was significantly repeatable over five sequential responses at 30min intervals, and also repeatable after a 30 day interval for most of the components. This indicates that the variation is intrinsic to the individuals, but there was no evidence for trade-offs amongst the components of the response, suggesting that, if trade-offs exist, they must be against other ecologically important behavioural or performance traits.
Mots-Clés: anaerobic performance; anaerobic swimming performance; body form; dicentrarchus-labrax; escape response; european sea bass; fast start; fish; gambusia-affinis; individual variation; locomotor performance; morphology; poecilia-reticulata; rainbow-trout; repeatability; sea bass; stereotype; swimming performance; teleost fish
|
Masroor, W., Farcy, E., Gros, R., & Lorin-Nebel, C. (2018). Effect of combined stress (salinity and temperature) in European sea bass Dicentrarchus labrax osmoregulatory processes. Comp. Biochem. Physiol. A-Mol. Integr. Physiol., 215, 45–54.
Résumé: European sea bass Dicentrarchus Iabrax undertake seasonal migrations to estuaries and lagoons that are characterized by fluctuations in environmental conditions. Their ability to cope with these unstable habitats is undeniable, but it is still not clear how and to what extent salinity acclimation mechanisms are affected at temperatures higher than in the sea. In this study, juvenile sea bass were pre-acclimated to seawater (SW) at 18 degrees C (temperate) or 24 degrees C (warm) for 2 weeks and then transferred to fresh water (FW) or SW at the respective temperature. Transfer to FW for two weeks resulted in decreased blood osmolalities and plasma Cl- at both temperatures. In FW warm conditions, plasma Na+ was similar to 15% lower and Cl- was similar to 32% higher than in the temperate-water group. Branchial Na+/K+-ATPase (NKA) activity measured at the acclimation temperature (V-apparent) did not change according to the conditions. Branchial Na+/K+-ATPase activity measured at 37 degrees C (V-max) was lower in warm conditions and increased in FW compared to SW conditions whatever the considered temperature. Mitochondrion-rich cell (MRC) density increased in FW, notably due to the appearance of lamellar MRCs, but this increase was less pronounced in warm conditions where MRC's size was lower. In SW warm conditions, pavement cell apical microridges are less developed than in other conditions. Overall gill morphometrical parameters (filament thickness, lamellar length and width) differ between fish that have been pre acclimated to different temperatures. This study shows that a thermal change affects gill plasticity affecting whole-organism ion balance two weeks after salinity transfer.
Mots-Clés: Osmoregulation; fresh-water; Teleost; goldfish carassius-auratus; Ionocytes; branchial na+/k+-atpase; fish gills; gill morphology; Gill plasticity; Hydromineral balance; k+-atpase activity; mitochondria-rich cells; mozambique tilapia; NKA activity; salmon salmo-salar; Thermal acclimation; tilapia oreochromis-mossambicus
|