Accueil | << 1 >> |
![]() |
BRIND'AMOUR, A., LAFFARGUE, P., MORIN, J., VAZ, S., FOVEAU, A., & LE BRIS, H. (2014). Morphospecies and taxonomic sufficiency of benthic megafauna in scientific bottom trawl surveys. Continental Shelf Research, 72, 1–9.
Résumé: Scientific fisheries surveys routinely identify a large diversity of commercial and non-commercial benthic megainvertebrates that could provide useful information for Marine Strategy Framework Directive (MSFD) descriptors. Species is obviously the basic taxonomic level to which most ecological studies and theories refer. Identification at this level of organization is indeed always preferred over any other taxonomic level. Nevertheless, aggregation of species to higher taxonomic levels may be unavoidable sometimes, since errors of identification are known or suspected to occur in many surveys. Using analyses of taxonomic sufficiency (identification of organisms at various taxonomic resolutions) and groups of morphospecies (taxa identified easily by non-experts on the basis of evident morphological traits), this study aims to quantify the loss of ecological information incurred by partial identification of benthic megafauna in bottom trawl surveys in order to put such data to good use. The analyses were conducted on five scientific surveys representing a large range of geographical areas (from 150 km2 to 150 000 km2) and environmental conditions. Results show that genus, family and, particularly, morphospecies are good surrogates for species identification in community analyses. We suggest that bottom trawl surveys can provide reliable megafauna data that may usefully complete those obtained by grab surveys. The use of morphospecies could lead to new strategies, combining different datasets to provide indicators for MSFD descriptors (e.g. D6).
|
Foveau, A., Vaz, S., Desroy, N., & Kostylev, V. E. (2017). Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling. PLoS One, 12(10), e0184486.
Résumé: The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter's purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats.
|