2020 |
Arneth, A., et al. "Post-2020 biodiversity targets need to embrace climate change." Pnas. 117.49 (2020): 30882–30891.
Résumé: Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity’s post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post-2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity’s capacity to contribute to climate change mitigation and adaptation.
|
|
Beckensteiner, J., et al. "Drivers and trends in catch of benthic resources in Chilean TURFs and surrounding open access areas." Ocean Coastal Manage.. 183 (2020): 104961.
Résumé: Beginning in the 1990's, Chile implemented an extensive Territorial User Rights for Fisheries (TURFs) network that now comprises nearly 1,000 TURFs. This network provides a rare opportunity to examine spatial and temporal trends in TURF use and impacts on surrounding open access areas (OAAs). In this analysis, landings of keyhole limpet (Fissurella spp.), kelp (Lessonia spp.) and red sea urchin (Loxechinus albus) were used to estimate catch-per-unit effort (CPUEs) and catch-per-unit area (CPUAs) indices inside and outside TURFs by fishing cove. For these species, CPUEs and CPUAs in 2015 were significantly higher inside TURFs. However, temporal trends analyzed with a linear mixed effects model indicate that CPUAs inside TURFs have been significantly decreasing since 2000 for keyhole limpet, red sea urchin and for loco (Concholepas concholepas), while in OAAs this measure only decreased for limpet. An elastic net regression was used to better explain catches in OAAs during 2015, including a variety of variables related to the characteristics and activity of proximal TURFs. Results indicate that exogenous factors unrelated to TURF management were the primary drivers of catches in OAAs during 2015 but that factors related to proximal TURFs appear to have a slight negative impact that grows over time. Collectively, these results indicate that while TURFs are associated with higher catch rates than surrounding OAAs, catch rates appear to be decreasing over time and, though limited, the impact of TURFs on surrounding OAAs may be negative. These findings suggest a need for a more nuanced and dynamic approach to spatial management on benthic resources in Chile.
|
|
2018 |
Avadi, A., et al. "Environmental assessment of the Peruvian industrial hake fishery with LCA." Int. J. Life Cycle Assess.. 23.5 (2018): 1126–1140.
Résumé: The Peruvian hake (Merluccius gayi peruanus) stock has been in a delicate state in the last decades due to overexploitation combined with adverse climatic events. The stock is showing certain signs of recovery since 2012. This work analyses the environmental impacts of current fleet operations and its likely trend. The fleet was divided into coherent segments, per holding capacity and engine power. The validity of both segmentations, as well as the presence of an effect of economies of scale driving fuel use intensity (FUI), was tested. Life cycle assessment was used to calculate environmental impacts, per individual sampled vessel and per segment, complemented with indicators of energy efficiency and biotic resource depletion. The fleet is highly fuel-efficient (120 kg fuel per tonne fish) when compared with other reported values, despite a large overcapacity that increases the impact of the construction and maintenance phases. Significant inter-annual FUI variations were observed (80.0 kg t(-1) in 2008 to 210.3 kg t(-1) in 2006), but no clear trend. Neither significant differences in FUI among fleet segments nor a clear effect of economies of scale were found (but FUI analysis was based on a small sample of 32 values for nine vessels, two of which had data for a single year). Only the largest vessels, featuring 242 m(3) holding capacity and 850 hp engine power, were found to have lower FUI than any of the other vessels, but no statistical test could be applied to validate this difference. Differences in environmental impacts of individual vessels are mostly dominated by their relative FUI. Fuel use and, to a lower extent, maintenance are the main sources of environmental impacts. The most contributing impacts to ReCiPe single score are climate change, human toxicity and fossil depletion. The fishery's impacts on the biotic natural resource were orders of magnitude higher than many other global hake stocks, due to overexploitation. The environmental impacts of the national hake fleet are relatively low during the study period, despite an overcapacity of the fleet. With the perspective of expanding its operations and obtaining better yields on the eventuality that the stock fully recovers, these impacts should decrease. More research based on additional FUI data is necessary to effectively compare the performance of these vessels with larger ones (featuring > 180 m(3) and > 500 hp, of which nine existed in 2016) before possibly recommending their preferential use.
|
|
Guerrero, A. M., et al. "Achieving the promise of integration in social-ecological research: a review and prospectus." Ecol. Soc.. 23.3 (2018): 38.
Résumé: An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.
|
|
Kara, M. H., et al. "Dynamics of Research in Aquaculture in North Africa and Support for Sustainable Development and Innovation." Rev. Fish. Sci. Aquac... 26.3 (2018): 309–318.
Résumé: This article examines the supporting role of research in the development of marine aquaculture in the aquaculture-producing countries of North Africa: Algeria, Egypt, Morocco, and Tunisia. Research plays a significant role not only in the support of the development of the sector, but also in the evolution toward sustainable aquaculture practices and a better integrated management of this activity. This analysis was conducted as part of the Aquamed project whose main objective was to create a multi-stakeholder platform (institutional decision makers, producers, researchers, NGOs, etc.) to strengthen cooperation and stimulate innovation for sustainable aquaculture in the Mediterranean. In particular, the Aquamed project aimed at an exploration of forms of collaboration through the identification of sub-groups of countries whose similarity of situations or challenges could help promote dialogue. The study of aquaculture and research in the countries reveals the contrasted situations between Egypt and the three western North African countries (Algeria, Morocco, and Tunisia). The analysis of research capabilities was carried out on the basis of several indicators, which were compiled from a survey among the relevant main institutes in the various countries, as well as from bibliometric research on the publications produced in the field of aquaculture. Beyond the differences identified among the countries, the analysis emphasizes the similarity of the challenges and the benefits of strengthening collaborations on a sub-regional scale.
|
|
Mullon, C., and C. Mullon. "A constraint-based framework to study competition and cooperation in fishing." Fish Res.. 203 (2018): 74–83.
Résumé: In this paper, we present a simple framework to study competition, cooperation and bargaining options among fisheries when they operate under financial and technological constraints. Competition within constraints leads to a particular type of mathematical game in which the strategy choice by one player changes the strategy set of the other. By studying the equilibria and bargaining space of this game when players maximize either profit or yield, we show that differences in financial constraints among players lead to a tougher play, with a reduced bargaining space as the least constrained player can readily exclude another from the competition. The exacerbating effects of constraints on competition are particularly strong when players maximize yield. We discuss the significance of our results for fisheries management in a current context of financialization and technological development. We suggest that in order to maximize the chances of fruitful negotiations and aim towards a fair sharing of sea resources, it would be helpful to focus on leveling current differences in the constraints faced between competing fishing systems, notably by supporting local financial systems and technological control.
|
|
2017 |
Lucena-Fredou, F., et al. "Vulnerability of teleosts caught by the pelagic tuna longline fleets in South Atlantic and Western Indian Oceans." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 140 (2017): 230–241.
Résumé: Productivity and Susceptibility Analysis (PSA) is a methodology for evaluating the vulnerability of a stock based on its biological productivity and susceptibility to fishing. In this study, we evaluated the vulnerability of 60 stocks of tuna, billfishes and other teleosts caught by the tuna longline fleets operating in the South Atlantic and Indian Ocean using a semi-quantitative PSA. We (a) evaluated the vulnerability of the species in the study areas; (b) compared the vulnerability of target and non-target species and oceans; (c) analyzed the sensitivity of data entry; and (d) compared the results of the PSA to other fully quantitative assessment methods. Istiophoridae exhibited the highest scores for vulnerability. The top 10 species at risk were: Atlantic Istiophorus albicans; Indian Ocean Istiompax indica; Atlantic Makaira nigricans and Thunnus alalunga; Indian Ocean Xiphias gladius; Atlantic T. albacares, Gempylus serpens, Ranzania laevis and X. gladius; and Indian Ocean T. alalunga. All species considered at high risk were targeted or were commercialized bycatch, except for the Atlantic G. serpens and R. laevis which.were discarded, and may be considered as a false positive. Those species and others at high risk should be prioritized for further assessment and/or data collection. Most species at moderate risk were bycatch species kept for sale. Conversely, species classified at low risk were mostly discarded. Overall, species at high risk were overfished and/or subjected to overfishing. Moreover, all species considered to be within extinction risk (Critically Endangered, Endangered and Vulnerable) were in the high risk category. The good concordance between approaches corroborates the results of our analysis. PSA is not a replacement for traditional stock assessments, where a stock is assessed at regular intervals to provide management advice. It is of importance, however, where there is uncertainty about catches and life history parameters, since it can identify species at risk, and where management action and data collection is required, e.g. for many species at high and most at moderate risk in the South Atlantic and Indian oceans.
|
|
2016 |
Cinner, J. E., et al. "Bright spots among the world’s coral reefs." Nature. 535.7612 (2016): 416–419.
Résumé: Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
|
|
Drouineau, H., et al. "The need for a protean fisheries science to address the degradation of exploited aquatic ecosystems." Aquat. Living Resour.. 29.2 (2016): Unsp-E201.
Résumé: In this introductory paper we highlight key questions that were discussed during the symposium on “Status, functioning and shifts in marine ecosystems” organized by the Association Francaise d'Halieutique (French Association for Fisheries Sciences, Montpellier, France, July 2015). This symposium illustrated that fisheries science is now working at multiple scales and on all dimensions of socio-ecosystems (ecological, political, sociological, and economic), with a great diversity of approaches and taking into account different levels of complexity while acknowledging diverse sources of uncertainty. We argue that we should go one step further and call for a protean fisheries science to address the deteriorated states of aquatic ecosystems caused by anthropogenic pressures. Protean science is constantly evolving to meet emerging issues, while improving its coherence and integration capacity in its complexity. This science must be nourished by multiple approaches and be capable of addressing all organizational scales, from individual fish or fishermen up to the entire ecosystem, include society, its economy and the services it derives from aquatic systems. Such a protean science is required to address the complexity of ecosystem functioning and of the impacts of anthropogenic pressures.
|
|
Kara, M. H., et al. "Twenty years of aquaculture in North Africa: developments, critical assessment and future." Cah. Agric.. 25.6 (2016): 64004.
Résumé: This paper presents the evolution of aquaculture in North Africa during the 20 last years, and the assets and bottlenecks for each country. This work uses the results of the European project Aquamed (2011-2013). The analysis of the evolutions of this sector, including research and development allows to establish a diagnosis on the strengths and the weaknesses in the four countries (Morocco, Algeria, Tunisia and Egypt). The retrospective analysis helps in identifying solutions for a more sustainable development. It also contributes to select priorities for action in a long-term vision (2035). This double overview, on the past and the future, should help decision-makers and experts to identify the best politics for a sector, which has a high potential in the region.
|
|
2015 |
Avadi, A., and P. Freon. "A set of sustainability performance indicators for seafood : direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture." Ecological Indicators. 48 (2015): 518–532.
Résumé: Different seafood products based on Peruvian anchoveta (Engraulis ringens) fisheries and freshwater aquaculture of trout (Oncorhynchus mykiss), tilapia (Oreochromis spp.) and black pacu (Colossoma macropomum), contribute at different scales to the socio-economic development, environmental degradation and nutrition of the Peruvian population. Various indicators have been used in the literature to assess the performance of these industries regarding different aspects of sustainability, notably their socio-economic performance. In this study, a novel set of indicators is proposed to evaluate the sustainability performance of these industries in Peru, based on life cycle assessment (LCA) and nutritional profiling, as well as on energy and socio-economic assessment approaches. The emphasis is put on the potential of different products to contribute to improving the nutrition of the Peruvian population in an energy-efficient, environmentally friendly and socio-economically sound way. The set of indicators includes biotic resource use (BRU), cumulative energy demand (CED), energy return on investment (EROI), production costs, gross profit generation, added value, and nutritional profile in terms of vitamins, minerals and essential fatty acids; as well as a number of life cycle impact assessment indicators commonly used in seafood studies, and some recently proposed indicators of resource status (measuring the impacts of fish biomass removal at the species and ecosystem levels). Results suggest that more energy-intensive/highly processed products (cured and canned anchoveta products) represent a higher burden, in terms of environmental impact, than less energy-intensive products (salted and frozen anchoveta products, semi-intensive aquaculture products). This result is confirmed when comparing all products regarding their industrial-to-nutritional energy ratio. Regarding the other attributes analysed, the scoring shows that salted and frozen anchoveta products generate fewer jobs and lower gross profit than canned and cured, while aquaculture products maximise them. Overall, it was concluded that less energy-intensive industries (anchoveta freezing and salting) are the least environmentally impacting but also the least economically interesting products, yet delivering higher nutritional value. Aquaculture products maximise gross profit and job creation, with lower energy efficiency and nutritional values. The proposed set of sustainability indicators fulfilled its goal in providing a multi-criteria assessment of anchoveta direct human consumption and freshwater aquaculture products. As often the case, there is no ideal product and the best trade-off must be sought when making decision regarding fisheries and seafood policy. No threshold for performance of the different indicators is offered, because the goal of the comparison is to contrast the relative performance among products, not of products against reference values.
|
|
2009 |
Moffitt, E. A., et al. "Marine reserve networks for species that move within a home range." Ecological Applications. 19.7 (2009): 1835–1847.
Résumé: Marine reserves are expected to benefit a wide range of species, but most models used to evaluate their effects assume that adults are sedentary, thereby potentially overestimating population persistence. Many nearshore marine organisms move within a home range as adults, and there is a need to understand the effects of this type of movement on reserve performance. We incorporated movement within a home range into a spatially explicit marine reserve model in order to assess the combined effects of adult and larval movement on persistence and yield in a general, strategic framework. We describe how the capacity of a population to persist decreased with increasing home range size in a manner that depended on whether the sedentary case was maintained by self persistence or network persistence. Self persistence declined gradually with increasing home range and larval dispersal distance, while network persistence decreased sharply to 0 above a threshold home range and was less dependent on larval dispersal distance. The maximum home range size protected by a reserve network increased with the fraction of coastline in reserves and decreasing exploitation rates outside reserves. Spillover due to movement within a home range contributed to yield moderately under certain conditions, although yield contributions were generally not as large as those from spillover due to larval dispersal. Our results indicate that, for species exhibiting home range behavior, persistence in a network of marine reserves may be more predictable than previously anticipated from models based solely on larval dispersal, in part due to better knowledge of home range sizes. Including movement within a home range can change persistence results significantly from those assuming that adults are sedentary; hence it is an important consideration in reserve design.
|
|