Bastaraud, A., Cecchi, P., Handschumacher, P., Altmann, M., & Jambou, R. (2020). Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? International Journal of Environmental Research and Public Health, 17(2), 480.
Résumé: A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
|
Cousin, X., Batel, A., Bringer, A., Hess, S., Begout, M. - L., & Braunbeck, T. (2020). Microplastics and sorbed contaminants – Trophic exposure in fish sensitive early life stages. Mar. Environ. Res., 161, 105126.
Résumé: The present study evaluated very small microplastic particle (MPs) transfer to zebrafish and marine medaka larvae via prey experimentally exposed to MPs from the onset of feeding. Larvae were fed Paramecium or Anemia nauplii loaded with fluorescent 1-5 or 10-20 mu m MP. Pollutant accumulation was analyzed by optically tracking of benzo[a]pyrene (BaP) and recording cyp1a transcription. Paramecium transferred 1-5 mu m particles only, whereas Artemia efficiently transferred both MPs. Although zebrafish and medaka larvae fed from the onset of active food intake (2-3 dph, respectively) on Paramecium and from days 6-7 post-hatch on Artemia nauplii, neither MP accumulation nor translocation to tissues was detected. MP egestion started within few hours after ingestion. Cyp1a induction and fluorescent analyses proved BaP bioavailability after transfer via Paramecium and Artemia. Unicellular or plankton organisms ingest contaminants via MPS and transfer effectively these to sensitive early life-stages of vertebrates, giving rise to whole-life exposure.
|
Le Bihanic, F., Clerandeau, C., Cormier, B., Crebassa, J. - C., Keiter, S. H., Beiras, R., et al. (2020). Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull., 154, 111059.
Résumé: The role of polyethylene microplastics 4-6 mu m size (MPs) in the toxicity of environmental compounds to fish early life stages (ELS) was investigated. Marine medaka Oryzias melastigma embryos and larvae were exposed to suspended MPs spiked with three model contaminants: benzo(a)pyrene (MP-BaP), perfluorooctanesulfonic acid (MP-PFOS) and benzophenone-3 (MP-BP3) for 12 days. There was no evidence of MPs ingestion but MPs agglomerated on the surface of the chorion. Fish ELS exposed to virgin MPs did not show toxic effects. Exposure to MP-PFOS decreased embryonic survival and prevented hatching. Larvae exposed to MP-BaP or MP-BP3 exhibited reduced growth, increased developmental anomalies and abnormal behavior. Compared to equivalent water-borne concentrations, BaP and PFOS appeared to be more embryotoxic when spiked on MPs than when alone in seawater. These results suggest a relevant pollutant transfer by direct contact of MPs to fish ELS that should be included in the ecotoxicological risk assessment of MPs.
|
Lefebvre, C., Saraux, C., Heitz, O., Nowaczyk, A., & Bonnet, D. (2019). Microplastics FTIR characterisation and distribution in the water column and digestive tracts of small pelagic fish in the Gulf of Lions. Marine Pollution Bulletin, 142, 510–519.
Résumé: This study aims at quantifying and characterising microplastics (MP) distribution in the water column of the NW Mediterranean Sea as well as MP ingestion by the 2 main planktivorous fish of the area, sardine and anchovy. Debris of similar sizes were found in all water column samples and in all but 2 fish guts (out of 169). MP were found in 93% of water column samples with an average concentration of 0.23 ± 0.20 MP·m−3, but in only 12% of sardines (0.20 ± 0.69 MP·ind−1) and 11% of anchovies (0.11 ± 0.31 MP·ind−1). Fibres were the only shape of MP encountered and polyethylene terephthalate was the main polymer identified in water columns (61%), sardines (71%) and anchovies (89%). This study confirms the ubiquity of MP in the Mediterranean Sea and imparts low occurrence in fish digestive tracts.
|
Spedicato, M. T., Zupa, W., Carbonara, P., Fiorentino, F., Follesa, M. C., Galgani, F., et al. (2019). Spatial distribution of marine macro-litter on the seafloor in the northern Mediterranean Sea: the MEDITS initiative. Sci. Mar., 83, 257–270.
Résumé: Marine litter is one of the main sources of anthropogenic pollution in the marine ecosystem, with plastic representing a global threat. This paper aims to assess the spatial distribution of plastic macro-litter on the seafloor, identifying accumulation hotspots at a northern Mediterranean scale. Density indices (items km(-2)) from the MEDITS trawl surveys (years 2013-2015) were modelled by generalized additive models using a Delta-type approach and several covariates: latitude, longitude, depth, seafloor slope, surface oceanographic currents and distances from main ports. To set thresholds for the identification of accumulation areas, the percentiles (85th, 90th and 95th) of the plastic spatial density distribution were computed on the raster data. In the northern Mediterranean marine macro-litter was widespread (90.13% of the 1279 surveyed stations), with plastic by far the most recurrent category. The prediction map of the plastic density highlighted accumulation areas (85th, 90th and 95th percentiles of the distribution, respectively, corresponding to 147, 196 and 316 items km(-2)) in the Gulf of Lions, eastern Corsica. the eastern Adriatic Sea, the Argo-Saronic region and waters around southern Cyprus. Maximum densities were predicted in correspondence to the shallower depths and in proximity to populated areas (distance from the ports). Surface currents and local water circulation with cyclonic and anticyclonic eddies were identified as drivers likely facilitating the sinking to the bottoms of floating debris
|