Accueil | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Auguet, J. C., Barberan, A., & Casamayor, E. O. (2010). Global ecological patterns in uncultured Archaea. Isme J, 4(2), 182–190.
Résumé: We have applied a global analytical approach to uncultured Archaea that for the first time reveals well-defined community patterns along broad environmental gradients and habitat types. Phylogenetic patterns and the environmental factors governing the creation and maintenance of these patterns were analyzed for c. 2000 archaeal 16S rRNA gene sequences from 67 globally distributed studies. The sequences were dereplicated at 97% identity, grouped into seven habitat types, and analyzed with both Unifrac (to explore shared phylogenetic history) and multivariate regression tree (that considers the relative abundance of the lineages or taxa) approaches. Both phylogenetic and taxon-based approaches showed salinity and not temperature as one of the principal driving forces at the global scale. Hydrothermal vents and planktonic freshwater habitats emerged as the largest reservoirs of archaeal diversity and consequently are promising environments for the discovery of new archaeal lineages. Conversely, soils were more phylogenetically clustered and archaeal diversity was the result of a high number of closely related phylotypes rather than different lineages. Applying the ecological concept of 'indicator species', we detected up to 13 indicator archaeal lineages for the seven habitats prospected. Some of these lineages (that is, hypersaline MSBL1, marine sediment FCG1 and freshwater plSA1), for which ecological importance has remained unseen to date, deserve further attention as they represent potential key archaeal groups in terms of distribution and ecological processes. Hydrothermal vents held the highest number of indicator lineages, suggesting it would be the earliest habitat colonized by Archaea. Overall, our approach provided ecological support for the often arbitrary nomenclature within uncultured Archaea, as well as phylogeographical clues on key ecological and evolutionary aspects of archaeal biology.
|
Bourgeois, S., Hochard, S., & Pringault, O. (2010). Subtidal microphytobenthos: effects of inorganic and organic compound supplies on migration, production, and respiration in a tropical coastal environment. Aquat. Microb. Ecol., 61(1), 13–29.
Résumé: Microphytobenthos (MPB) is an important primary producer in coastal ecosystems. In oligotrophic environments, its activity may be controlled by the availability of organic or inorganic compounds but also by its migration behavior. The objective of this study was to determine, in MPB-colonized subtidal sediments, the consequences of short-term enrichments (< 24 h) of organic (alanine, glutamate, and glucose) and inorganic (ammonium, phosphate) compounds on MPB vertical migration and metabolisms, net production (NP), areal gross production (AGP), and community respiration (R). Two contrasting stations located in the southwest lagoon of New Caledonia were investigated: 1 under strong anthropogenic influence and 1 under more oceanic influence. Both stations were dominated by epipelic diatoms. Differences in net primary production were explained by diurnal variation of MPB biomass at the sediment surface, showing the importance of MPB migration in the functioning of these subtidal environments. However, a stimulation or inhibition of MPB migration did not necessarily impact the net primary production of the system; this strongly depends upon the interactions between the autotrophic and heterotrophic compartments, the latter being controlled by the environmental conditions. For the station under low anthropogenic influence, AGP and R were both significantly stimulated by alanine, glucose, and ammonium, and significantly inhibited by phosphate. The similar responses of AGP and R to enrichments suggest that autotrophs and heterotrophs were tightly coupled. Conversely, in the station under strong anthropogenic influence, AGP and R responded differently. Addition of ammonium inhibited AGP without having an impact on R, whereas addition of phosphate inhibited R whilst having no measurable effect on AGP. In this station, the coupling between autotrophs and heterotrophs was weakened, suggesting that the carbon demand of the heterotrophic compartment is probably sustained by the supplies of allochthonous organic matter rather than by exudates from the autotrophic compartment.
Mots-Clés: Amino acids; Autotroph-heterotroph coupling; Glucose; Nutrients; Oxygen; Reflectance; availability; benthic diatoms; chlorophyll-a fluorescence; coral-reef lagoon; headwater streams; hypersaline microbial mat; lagoon; marine; microelectrode; new-caledonia; nutrient; oxygenic photosynthesis; phytoplankton
|
Denis, M., Thyssen, M., Martin, V., Manca, B., & Vidussi, F. (2010). Ultraphytoplankton basin-scale distribution in the eastern Mediterranean Sea in winter: link to hydrodynamism and nutrients. Biogeosciences, 7(7), 2227–2244.
Résumé: The basin-scale distribution of ultraphytoplankton (< 10 mu m) was determined in the upper 200 m of the eastern Mediterranean Sea during the winter season. Four clusters were resolved by flow cytometry on the basis of their optical properties and identified as Synechococcus, Prochlorococcus, pico- (< 3 mu m) and nanoeukaryotes (3-10 mu m). Synechococcus was the most abundant population (maximum abundance of about 37 000 cells cm(-3)) and contributed up to 67.7% to the overall ultraphytoplanktonic carbon biomass, whereas the contribution of Prochlorococcus never exceeded 6.5%. The maximum integrated carbon biomass was 1763, 453, 58 and 571 mg C m(-2) for nanoeukaryotes, picoeukaryotes, Prochlorococcus and Synechococcus respectively. Water mass properties were analyzed on the basis of temperature and salinity distributions in order to account for the general circulation and locate the main hydrodynamic structures (fronts, gyres, transition between western and eastern basins). The effect of the main hydrodynamic structures and nutrients on the ultraphytoplankton distribution was investigated. No positive correlation between nutrients and phytoplankton could be established when considering large scales. However, below 50 m depth, nutrient ratios between particular stations were correlated to corresponding density ratios. In contrast, significant relationships were found between Synechococcus abundance and density, resulting from the impact of a gyre in southern Adriatic basin and a thermohaline front in the Ionian basin. A significant relationship was also found between picoeukaryotes and salinity in the comparison of western and eastern Mediterranean Sea.
|
Ayon, P., Swartzman, G., Espinoza, P., & Bertrand, A. (2011). Long-term changes in zooplankton size distribution in the Peruvian Humboldt Current System : conditions favouring sardine or anchovy. Marine Ecology. Progress Series, 422, 211–222.
Résumé: Changes in the size distribution of zooplankton in the Humboldt Current System have been hypothesized to underlie observed changes in sardine and anchovy populations, the dominant pelagic fish species. To examine this hypothesis, the size distribution of over 15 000 zooplankton data samples collected since the 1960s was qualitatively determined. Dominance of each size group of zooplankton (small, medium and large) and of euphausiids was modelled using generalized additive models as a function of year, latitude, time of day, distance from the 200 m isobath (a surrogate for on-shelf versus off-shelf), sea surface temperature and salinity. The temporal (yr) pattern for euphausiid dominance was highly cross-correlated (i.e. was in phase) with the time series for estimated biomass of anchovy, and small zooplankton dominance with that for estimated sardine biomass. This supports the focal hypothesis based on feeding-energetic experiments, which showed energetic advantages to sardine filter feeding on smaller zooplankton and to anchovy bite feeding on larger copepods and euphausiids. Although euphausiids predominate offshore from the shelf break, anchovy biomass is generally highest on the shelf, suggesting a possible mismatch between anchovy feeding and euphausiid dominance. However, evidence concerning the offshore expansion of the anchovy range in cooler conditions, where both anchovy and euphausiids predominate, somewhat alleviates this apparent contradiction. A strong diel component to euphausiids and large zooplankton indicated diel migration for these zooplankton groups. That anchovy will preferentially eat euphausiids when they are more available (i.e. during the night and offshore) is supported by anchovy diet data.
Mots-Clés: abundance; anchovy; Current; dominance; energetics; Euphausiids; Feeding; Humboldt; Sardine; size; System; Zooplankton
|
Fournier, J., Dupuy, C., Bouvy, M., Couraudon-Réale, M., Charpy, L., Pouvreau, S., et al. (2012). Pearl oysters Pinctada margaritifera grazing on natural plankton in Ahe atoll lagoon (Tuamotu archipelago, French Polynesia). Marine Pollution Bulletin, 65(10–12), 490–499. |