Accueil | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Larras, F., Rimet, F., Gregorio, V., Bérard, A., Leboulanger, C., Montuelle, B., et al. (2016). Pollution-induced community tolerance (PICT) as a tool for monitoring Lake Geneva long-term in situ ecotoxic restoration from herbicide contamination. Environ Sci Pollut Res, 23(5), 4301–4311.
Résumé: Chemical monitoring revealed a regular decrease in herbicide concentration in Lake Geneva since last decades that may be linked to an ecotoxic restoration of nontarget phytoplanktonic communities. The Pollution-induced community tolerance (PICT) approach was tested as a tool to monitor the ecotoxic restoration of Lake Geneva for herbicides from 1999 to 2011. We conducted monthly assessments in 1999 and in 2011 for the tolerance of the phytoplankton communities to two herbicides (atrazine and copper), using PICT bioassays. The taxonomical composition of the communities was determined on the same collecting dates. The herbicide concentration decrease during the 12 years significantly influenced the composition of communities. The PICT monitoring indicated that a significant tolerance decrease in the community to both herbicides accompanied the herbicide concentration decrease. PICT measurements for atrazine and copper also changed at the intra-annual level. These variations were mainly due to community composition shifts linked to seasonal phosphorus and temperature changes. PICT monitoring on a seasonal basis is required to monitor the mean tolerance of communities. PICT appeared to be a powerful tool that reflected the toxic effects on environmental communities and to monitor ecotoxic ecosystem restoration.
Mots-Clés: Atmospheric Protection/Air Quality Control/Air Pollution; Atrazine; Copper; Ecotoxicology; Environmental Chemistry; Environmental Health; Environment, general; Phytoplankton; Pollution-induced community tolerance (PICT); Restoration; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
|
Catherine, A., Selma, M., Mouillot, D., Troussellier, M., & Bernard, C. (2016). Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes. Science of The Total Environment, 559, 74–83.
Résumé: Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems.
|
Maloufi, S., Catherine, A., Mouillot, D., Louvard, C., Couté, A., Bernard, C., et al. (2016). Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshw Biol, 61(5), 633–645.
Résumé: * The extent to which stochastic and deterministic processes influence variations in species communities across space and time remains a central question in theoretical and applied ecology. Despite their high dispersal ability, the composition of phytoplankton communities displays striking spatial variations among lakes even at small spatial scale. * To investigate the mechanisms underlying the distribution of phytoplankton species, we evaluate the contribution of stochastic, spatial and environmental processes in determining β-diversity patterns of phytoplankton at a regional scale. Phytoplankton communities were surveyed in 50 different lakes from north-central France, a region characterised by strong environmental heterogeneity. * The regional species pool was characterised by extremely high β-diversity levels, which were mainly explained by species replacement (i.e. turnover) rather than by differences in species richness (i.e. nestedness). Null models of random species distribution and spatial processes failed to explain observed β-diversity patterns. At the opposite, local environmental conditions strongly influenced the degree of uniqueness of local phytoplankton communities, with the most contrasted environments, including human-dominated areas, promoting highly distinct phytoplankton communities. * Our results suggest that species-sorting mechanisms that arise from variations in local environmental conditions drive high species turnover at the region scale. Thus, in a landscape strongly impacted by cultural eutrophication, further anthropogenic impacts on aquatic ecosystems would likely induce regional homogenisation of phytoplankton communities. Overall, our study supports the fact that the management of lakes and reservoirs in anthropic landscapes should aim at maintaining environmental heterogeneity while preventing further eutrophication in order to favour the maintenance of high phytoplankton β- and γ-diversity.
|
Tsiola, A., Pitta, P., Fodelianakis, S., Pete, R., Magiopoulos, I., Mara, P., et al. (2016). Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment. Microb Ecol, 71(3), 575–588.
Résumé: The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.
|
Fouilland, E., Mostajir, B., Levasseur, M., Roy, S., Vidussi, F., de Mora, S., et al. (2016). Effect of mixing on the structure of a natural plankton community: a mesocosm study. Vie et Milieu, 66(3-4), 251–259.
Résumé: A plankton community (< 202 μm) from the St. Lawrence Estuary was isolated
in four outdoor mesocosms with SLOW and fast mixing regimes. Variations in the concentrations of nutrients, chlorophyll a (Chl a), nitrogen transport rates and plankton species composition were monitored over a 10 day period. The vertical mixing times (Tm) for the slow and fast mixing regimes were 180 and 60 min, corresponding to a vertical eddy diffusivity (Kv) of 2.34 and 7.03 cm2 s–1, respectively. The different mixing regimes had a strong effect on the physiology of the phytoplankton and the specific structure of the plankton assemblage. The Slow mixing regime stimulated the development of a mixed community of flagellates, small diatoms and proto-metazooplankton while the fast mixing regime triggered the development of a large diatom-dominated community with lower abundances of proto-metazooplankton. At the end of the 10 day experiment, the Chl a concentrations were 50 % higher in the mesocosms with the fast mixing regime than in those with the slow mixing regime. These results indicate that, under low nutrient conditions, higher turbulence gives a competitive advantage to diatoms and decreases the zooplankton grazing pressure, resulting in net positive growth. Extrapolation of these results to natural systems suggests that a wind-driven mixing event may increase the net phytoplankton biomass production of a stratified water column, even if there is no external input of nutrients. |