|
Ben Gharbia, H., Yahia, O. K. - D., Cecchi, P., Masseret, E., Amzil, Z., Herve, F., et al. (2017). New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. Plos One, 12(11), e0187963.
Résumé: Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.
|
|
|
Ben Othman, H., Lanouguère, É., Got, P., Sakka Hlaili, A., & Leboulanger, C. (2018). Structural and functional responses of coastal marine phytoplankton communities to PAH mixtures. Chemosphere, 209, 908–919.
Résumé: The toxicity of polycyclic aromatic hydrocarbons (PAHs) mixtures was evaluated on natural phytoplankton communities sampled from lagoons of Bizerte (South-western Mediterranean Sea) and Thau (North-western Mediterranean Sea). PAHs induced short-term dose and ecosystem-dependant decreases in photosynthetic potential. Chlorophyll a was negatively affected by increasing PAHs concentrations, together with dramatic changes in phytoplankton community composition. Size classes were strongly affected in the Bizerte compare to the Thau lagoon, with a decrease in nano- and microphytoplankton densities compare to picophytoplankton. In both locations, the diatom Entomoneis paludosa appeared favoured under PAH exposure as evidenced by increase in cell density, whereas autotrophic flagellates and dinophytes were strongly reduced. Smaller cells were more tolerant to exposure to highest PAHs concentrations, with persistent picophytoplankton carbon biomass at the end of the incubations. Apparent recovery of photosynthetic potential, accompanied with a regrowth of chlorophyll a under the lowest PAH doses, coincided with a significantly altered community composition in both lagoons. Furthermore, sensitivity to PAHs was not related to the phytoplankton cell size, and toxicity-induced modification of top-down control by grazers during the experiment cannot be excluded.
|
|
|
Ben Othman, H., Leboulanger, C., Le Floc'h, E., Mabrouk, H. H., & Hlaili, A. S. (2012). Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter? J. Hazard. Mater., 243, 204–211.
Résumé: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L-1. The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 mu g L-1, respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 mu g L-1 for the picophytoplankton Picochlorum sp. to 418 mu g L-1 for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms. (C) 2012 Elsevier B.V. All rights reserved.
|
|
|
Ben Othman, H., Pringault, O., Louati, H., Hlaili, A. S., & Leboulanger, C. (2017). Impact of contaminated sediment elutriate on coastal phytoplankton community (Thau lagoon, Mediterranean Sea, France). J. Exp. Mar. Biol. Ecol., 486, 1–12.
Résumé: Effects of sediment-released contaminants and nitrogen were assessed on phytoplankton communities sampled from Thau lagoon (France, Mediterranean Sea) and one close offshore marine station. Phytoplankton was exposed to sediment elutriate (seawater containing a mix of metals, organic chemicals, and nutrients) or to ammonium enrichment for four days using immersed microcosms exposed to natural conditions of light and temperature. Functional (production – respiration balance) and structural (taxonomy and cell densities) responses of the phytoplankton community were assessed. In the lagoon, both treatments stimulated phytoplankton growth, compare to controls. Conversely in the offshore station, the phytoplankton growth was stimulated only with the sediment elutriate addition. In offshore and lagoon stations, both treatments caused a shift in the taxonomic composition of the phytoplankton. Proliferation of potentially toxic diatoms and dinoflagellates resulted from the addition of elutriate. Correspondence analysis determined that phytoplankton from the offshore station was more sensitive to both treatments compared to the lagoon community. According to daily production and respiration balance, lagoon community metabolism remained heterotrophic (P < R) for all treatments, whereas only transient shifts to net autotrophy (P> R) were observed in the offshore community. Direct toxicity of contaminants released from sediment, if any, was therefore masked by nutrient enrichment effects, whereas indirect evidence of contaminant pressure was highlighted by changes in community composition and metabolism. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Bernard, C., Escalas, A., Villeriot, N., Agogué, H., Hugoni, M., Duval, C., et al. (2019). Very Low Phytoplankton Diversity in a Tropical Saline-Alkaline Lake, with Co-dominance of Arthrospira fusiformis (Cyanobacteria) and Picocystis salinarum (Chlorophyta). Microb Ecol, 78(3), 603–617.
Résumé: Lake Dziani Dzaha (Mayotte Island, Indian Ocean) is a tropical thalassohaline lake which geochemical and biological conditions make it a unique aquatic ecosystem considered as a modern analogue of Precambrian environments. In the present study, we focused on the diversity of phytoplanktonic communities, which produce very high and stable biomass (mean2014–2015 = 652 ± 179 μg chlorophyll a L−1). As predicted by classical community ecology paradigms, and as observed in similar environments, a single species is expected to dominate the phytoplanktonic communities. To test this hypothesis, we sampled water column in the deepest part of the lake (18 m) during rainy and dry seasons for two consecutive years. Phytoplanktonic communities were characterized using a combination of metagenomic, microscopy-based and flow cytometry approaches, and we used statistical modeling to identify the environmental factors determining the abundance of dominant organisms. As hypothesized, the overall diversity of the phytoplanktonic communities was very low (15 OTUs), but we observed a co-dominance of two, and not only one, OTUs, viz., Arthrospira fusiformis (Cyanobacteria) and Picocystis salinarum (Chlorophyta). We observed a decrease in the abundance of these co-dominant taxa along the depth profile and identified the adverse environmental factors driving this decline. The functional traits measured on isolated strains of these two taxa (i.e., size, pigment composition, and concentration) are then compared and discussed to explain their capacity to cope with the extreme environmental conditions encountered in the aphotic, anoxic, and sulfidic layers of the water column of Lake Dziani Dzaha.
|
|