Accueil | << 1 >> |
![]() |
Killen, S. S., Marras, S., Metcalfe, N. B., McKenzie, D. J., & Domenici, P. (2013). Environmental stressors alter relationships between physiology and behaviour. Trends in Ecology & Evolution, . |
Larsen, B. K., Skov, P. V., McKenzie, D. J., & Jokumsen, A. (2012). The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19 degrees C. Aquaculture, 324, 226–233.
Résumé: A 9 week growth trial was performed at two rearing densities; low (similar to 25 kg m(-3)) and high (similar to 100 kg m-3), in combination with either static water or a water current corresponding to 0.9 body lengths s(-1), to investigate the effects of density and exercise on the bioenergetics of rainbow trout reared at 19 degrees C, particularly routine metabolic rate (RMR), specific growth rate (SGR), and feed conversion ratio (FCR). The growth trial showed that high rearing density resulted in significantly lower SGR and increased FCR, with no significant alleviating effects of a water current, although slight improvement in both parameters were observed at low density. A significant linear relationship between SGR and FCR suggested that increased energy expenditure was the primary cause of reduced growth. Hourly measurements of instantaneous oxygen uptake, during a period of similar growth (200-350 g), revealed clear effects of the experimental conditions. Energetic budgets were calculated from feed intake and routine metabolic rate (RMR) and revealed that whilst feed intake was similar for all groups, a higher RMR in the high density groups resulted in a higher daily rate of energy utilization for routine activity, leading to slower growth. However, a lower RMR in fish subjected to a current resulted in a greater proportion of energy being retained, leading to significantly higher SGR for the selected period, at both low and high density. Furthermore, the presence of a water current was observed to induce schooling behaviour, which is known to reduce aggression and stress. It is thereby likely that the presence of a current had a positive effect on welfare in addition to its effect on energy metabolism. We conclude that the presence of a water current to some extent could alleviate the negative effects of high density at 19 degrees C, a relatively high temperature experienced in farming of rainbow trout during hot seasons. (C) 2011 Elsevier B.V. All rights reserved.
Mots-Clés: Energetic budget; Rainbow trout; Rearing density; Routine metabolic rate; Schooling behaviour; Sustained exercise; Welfare; cardiorespiratory performance; charr salvelinus-alpinus; feeding-behavior; fish welfare; food-intake; juvenile arctic charr; oxygen-consumption; physiology; respiratory; salmon salmo-salar; seasonal temperature
|
McKenzie, D. J., Blasco, F. R., Belão, T. C., Killen, S. S., Martins, N. D., Taylor, E. W., et al. (2017). Physiological determinants of individual variation in sensitivity to an organophosphate pesticide in Nile tilapia Oreochromis niloticus. Aquatic Toxicology, 189(Supplement C), 108–114.
Résumé: Individual variation in sub-lethal sensitivity to the organophosphate pesticide trichlorfon was investigated in Nile tilapia, using critical swimming speed (Ucrit) as an indicator. Tilapia exposed for 96h to 500μgl−1 trichlorfon at 26°C (Tcfn group, n=27) showed a significant decline in mean Ucrit, compared to their own control (pre-exposure) performance in clean water (−14.5±2.3%, mean±SEM), but also compared to a Sham group (n=10) maintained for 96h in clean water. Individuals varied in their relative sensitivity to the pesticide, with the decline in Ucrit after exposure varying from 1 to 41%. The Ucrit of the Tcfn group did not recover completely after 96h in clean water, remaining 9.4±3.2% below their own control performance. The decline in performance was associated with a significant increase in net cost of aerobic swimming, of +28.4±6.5% at a sustained speed of 2bodylengthss−1, which translated into a significant decline in swimming efficiency (Eswim) of −17.6±4.0% at that speed. Within the Tcfn group, individual Eswim was a strong positive determinant of individual Ucrit across all trials, and a strong negative determinant of individual% decline in Ucrit after pesticide exposure (P<0.001, linear mixed effect models). Trichlorfon had no effects on standard metabolic rate or active metabolic rate (AMR) but, nonetheless, individual Ucrit in all trials, and% decline in Ucrit after exposure, were strongly associated with individual AMR (positively and negatively, respectively, P<0.001). Individual Ucrit under control conditions was also a strong positive determinant of Ucrit after trichlorfon exposure (P<0.001), but not of the% decline in Ucrit performance. In conclusion, the OP pesticide impaired Ucrit performance by reducing Eswim but individual tilapia varied widely in their relative sensitivity. Intrinsic individual physiology determined effects of the pesticide on performance and, in particular, good swimmers remained better swimmers after exposure.
|
McKenzie, D. J., Steffensen, J. F., Taylor, E. W., & Abe, A. S. (2012). The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L. J. Exp. Biol., 215(8), 1323–1330.
Résumé: The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U-crit) protocol at 30 degrees C. Seven individuals (mean +/- s.e.m. mass 89 +/- 7. g, total length 230 +/- 4. mm) achieved a U-crit of 2.1 +/- 1. body. lengths. (BL). s(-1) and an active metabolic rate (AMR) of 350 +/- 21. mg. kg(-1). h(-1), with 38 +/- 6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U-crit of 2.0 +/- 0.2. BL. s(-1) and an AMR of 368 +/- 24. mg. kg(-1). h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P-O2=4. kPa) with access to normoxic air, the knifefish achieved a U-crit of 2.0 +/- 0.1. BL. s(-1) and an AMR of 338 +/- 29. mg. kg(-1). h(-1), similar to aquatic normoxia, but with 55 +/- 5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U-crit declined to 1.2 +/- 0.1. BL. s(-1) and AMR declined to 199 +/- 29. mg. kg(-1). h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.
|
Rogers, N. J., UrbinaLt, M. A., Reardon, E. E., McKenzie, D. J., & Wilsonl, R. W. (2016). A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P-crit). Conserv. Physiol., 4, cow012.
Résumé: Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P-crit)m has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P-crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P, including temperature, CO,, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P-crit; 20% of variation in the P-crit, data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO, within a closed respirometer during the measurement of P-crit. Modelling suggests that the final partial pressure of CO, reached can vary from 650 to 3500 mu atm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P it itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
Mots-Clés: Carbon dioxide; carp cyprinus-carpio; critical oxygen tension; eel anguilla-anguilla; environmental hypoxia; fresh-water fishes; goldfish carassius-auratus; inanga galaxias-maculatus; intermittent-flow respirometry; metabolic rate; oxygen and capacity limitation of thermal tolerance; physiological trait; postprandial metabolic-response; snapper pagrus-auratus; trout oncorhynchus-mykiss
|