Labourgade, P., Ballesta, L., Huveneers, C., Papastamatiou, Y., & Mourier, J. (2020). Heterospecific foraging associations between reef-associated sharks: first evidence of kleptoparasitism in sharks. Ecology, , e03117.
|
Lacoste, E., McKindsey, C. W., & Archambault, P. (2020). Biodiversity–Ecosystem Functioning (BEF) approach to further understanding aquaculture–environment interactions with application to bivalve culture and benthic ecosystems. Reviews in Aquaculture, .
Résumé: Coastal benthic ecosystems may be impacted by numerous human activities, including aquaculture, which continues to expand rapidly. Indeed, today aquaculture worldwide provides more biomass for human consumption than do wild fisheries. This rapid development raises questions about the interactions the practice has with the surrounding environment. In order to design strategies of sustainable ecosystem exploitation and marine spatial planning, a better understanding of coastal ecosystem functioning is needed so that tools to quantify impacts of human activities, including aquaculture, may be developed. To achieve this goal, some possible directions proposed are integrated studies leading to new concepts, model development based on these concepts and comparisons of various ecosystems on a global scale. This review draws on existing literature to (i) briefly summarize the major ecological interactions between off-bottom shellfish aquaculture and the environment, (ii) introduce research on the influence of benthic diversity on ecosystem functioning (BEF relationships) and (iii) propose a holistic approach to conduct aquaculture–environment studies using a BEF approach, highlighting the need for integrated studies that could offer insights and perspectives to guide future research efforts and improve the environmental management of aquaculture.
|
Le Chevanton, M., Garnier, M., Bougaran, G., Schreiber, N., Lukomska, E., Bérard, J. B., et al. (2013). Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Research, 2, 212–222.
|
Massol, F., Altermatt, F., Gounand, I., Gravel, D., Leibold, M. A., & Mouquet, N. (2017). How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. Oikos, 126(4), 532–546.
Résumé: The concept of life-history traits and the study of these traits are the hallmark of population biology. Acknowledging their variability and evolution has allowed us to understand how species adapt in response to their environment. The same traits are also involved in how species alter ecosystems and shape their dynamics and functioning. Some theories, such as the metabolic theory of ecology, ecological stoichiometry or pace-of-life theory, already recognize this junction, but only do so in an implicitly non-spatial context. Meanwhile, for a decade now, it has been argued that ecosystem properties have to be understood at a larger scale using meta-ecosystem theory because source-sink dynamics, community assembly and ecosystem stability are all modified by spatial structure. Here, we argue that some ecosystem properties can be linked to a single life-history trait, dispersal, i.e. the tendency of organisms to live, compete and reproduce away from their birth place. By articulating recent theoretical and empirical studies linking ecosystem functioning and dynamics to species dispersal, we aim to highlight both the known connections between life-history traits and ecosystem properties and the unknown areas, which deserve further empirical and theoretical developments.
|
Meistertzheim, A. - L., Lartaud, F., Arnaud-Haond, S., Kalenitchenko, D., Bessalam, M., Le Bris, N., et al. (2016). Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species. Deep Sea Research Part I: Oceanographic Research Papers, 114, 12–22.
Résumé: Cold-water corals (CWC) are main ecosystem engineers of the deep sea, and their reefs constitute hot-spots of biodiversity. However, their ecology remains poorly understood, particularly, the nature of the holobiont formed by corals with their associated bacterial communities. Here, we analyzed Madrepora oculata and Lophelia pertusa samples, collected from one location in a Mediterranean canyon in two different seasons (autumn and spring), in order to test for species specificity and temporal stability of the host-bacteria associations. The 16S rRNA sequencing revealed host-specific patterns of bacterial communities associated with L. pertusa and M. oculata, both in terms of community composition and diversity. All analyzed M. oculata polyps exhibited temporally and spatially similar bacterial communities dominated by haplotypes homologous to the known cnidarians-associated genus Endozoicomonas. In contrast, the bacterial communities associated with L. pertusa varied among polyps from the same colony, as well as among distinct colonies and between seasons. While the resilient consortium formed by M. oculata and its bacterial community fit the definition of holobiont, the versatility of the L. pertusa microbiome suggests that this association is more influenced by the environmental conditions or nutritional status. Our results thus highlight distinct host/microbes association strategies for these two closely related Scleractinians sharing the same habitat, suggesting distinct sensitivity to environmental change.
|