2020 |
Annasawmy, P., et al. "Micronekton distribution as influenced by mesoscale eddies, Madagascar shelf and shallow seamounts in the south-western Indian Ocean: an acoustic approach." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104812.
Résumé: An investigation of the vertical and horizontal distributions of micronekton, as influenced by mesoscale eddies, the Madagascar shelf and shallow seamounts, was undertaken using acoustic data collected during two research cruises at an unnamed pinnacle (summit depth similar to 240 m) thereafter named “MAD-Ridge”, and at La Perouse seamount (similar to 60 m) in the south-western Indian Ocean. MAD-Ridge is located to the south of Madagascar, in an “eddy corridor”, known both for its high mesoscale activity and high primary productivity. In contrast, La Perouse is located on the outskirts of the Indian South Subtropical Gyre (ISSG) province, characterised by low mesoscale activity and low primary productivity. During the MAD-Ridge cruise, a dipole was located in the vicinity of the seamount, with the anticyclone being almost stationary on the pinnacle. Total micronekton acoustic densities were greater at MAD-Ridge than at La Perouse. Micronekton acoustic densities of the total water column were lower within the anticyclone than within the cyclone during MAD-Ridge. Micronekton followed the usual diel vertical migration (DVM) pattern, except within the cyclone during MAD-Ridge where greater acoustic densities were recorded in the daytime surface layer. The backscatter intensities were stronger at the 38 kHz than at the 70 and 120 kHz frequencies in the daytime surface layer at MAD-Ridge cyclonic stations. These backscatter intensities likely correspond to gas-filled swimbladders of epi- and mesopelagic fish actively swimming and feeding within the cyclone or gelatinous organisms with gas inclusions. Our findings evidenced that the distributions of micronekton and DVM patterns are complex and are influenced significantly by physical processes within mesoscale eddies. The mesoscale eddies' effects were dominant over any potential seamount effects at the highly dynamic environment prevailing at MAD-Ridge during the cruise. No significant increase in total micronekton acoustic densities was observed over either seamount, but dense aggregations of biological scatterers were observed on their summits during both day and night.
|
|
Crochelet, E., et al. "Connectivity between seamounts and coastal ecosystems in the Southwestern Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104774.
Résumé: Understanding larval connectivity patterns is critical for marine spatial planning, particularly for designing marine protected areas and managing fisheries. Patterns of larval dispersal and connectivity can be inferred from numerical transport models at large spatial and temporal scales. We assess model-based connectivity patterns between seamounts of the Southwestern Indian Ocean (SWIO) and the coastal ecosystems of Mauritius, La Reunion, Madagascar, Mozambique and South Africa, with emphasis on three shallow seamounts (La Pemuse [LP], MAD-Ridge [MR] and Walters Shoal [WS]). Using drifter trajectory and a Lagrangian model of ichthyo-plankton dispersal, we show that larvae can undertake very long dispersion, with larval distances increasing with pelagic larval duration (PLD). There are three groups of greater connectivity: the region between the eastern coast of Madagascar, Mauritius and La Reunion islands; the seamounts of the South West Indian Ridge; and the pair formed by WS and a nearby un-named seamount. Connectivity between these three groups is evident only for the longest PLD examined (360 d). Connectivity from seamounts to coastal ecosystems is weak, with a maximum of 2% of larvae originating from seamounts reaching coastal ecosystems. Local retention at the three focal seamounts (LP, MR and WS) peaks at about 11% for the shortest PLD considered (15 d) at the most retentive seamount (WS) and decreases sharply with increasing PLD. Information on PLD and age of larvae collected at MR and LP are used to assess their putative origin. These larvae are likely self-recruits but it is also plausible that they immigrate from nearby coastal sites, i.e. the southern coast of Madagascar for MR and the islands of La Reunion and Mauritius for LP.
|
|
Forget, F., et al. "Beta diversity of pelagic assemblages at fish aggregating devices in the open ocean." African Journal of Marine Science. 42.2 (2020): 247–254.
Résumé: Owing to difficulties in accessing the vast open ocean, the beta (β) diversity of pelagic fish assemblages remains poorly studied. We investigated the relationship between assemblage similarity and geographical distance between anchored fish aggregating devices (FADs), sampled by standardised underwater visual censuses in three anchored FAD arrays in the Indian Ocean—at the Maldives, the Seychelles and Mauritius. The use of two complementary indices of β-diversity, based on presence/absence data (Jaccard similarity coefficient) and abundance data (Bray–Curtis index), revealed that geographical distance between sampling sites (from 4 to 257 km) appeared to have no effect on the similarity of fish assemblages associated with FADs within each array. The results of this preliminary study question the generalisation of the paradigm of an increase in β-diversity with geographic distance to the open-ocean fish community. Large-scale studies using a variety of datasets should be conducted to further investigate patterns of β-diversity in the open ocean.
|
|
Jensen, M. P., et al. "Seascape Genetics and the Spatial Ecology of Juvenile Green Turtles." Genes. 11.3 (2020): 278.
Résumé: Understanding how ocean currents impact the distribution and connectivity of marine species, provides vital information for the effective conservation management of migratory marine animals. Here, we used a combination of molecular genetics and ocean drift simulations to investigate the spatial ecology of juvenile green turtle (Chelonia mydas) developmental habitats, and assess the role of ocean currents in driving the dispersal of green turtle hatchlings. We analyzed mitochondrial (mt)DNA sequenced from 358 juvenile green turtles, and from eight developmental areas located throughout the Southwest Indian Ocean (SWIO). A mixed stock analysis (MSA) was applied to estimate the level of connectivity between developmental sites and published genetic data from 38 known genetic stocks. The MSA showed that the juvenile turtles at all sites originated almost exclusively from the three known SWIO stocks, with a clear shift in stock contributions between sites in the South and Central Areas. The results from the genetic analysis could largely be explained by regional current patterns, as shown by the results of passive numerical drift simulations linking breeding sites to developmental areas utilized by juvenile green turtles. Integrating genetic and oceanographic data helps researchers to better understand how marine species interact with ocean currents at different stages of their lifecycle, and provides the scientific basis for effective conservation management.
|
|
Marsac, F., et al. "Seamounts, plateaus and governance issues in the southwestern Indian Ocean, with emphasis on fisheries management and marine conservation, using the Walters Shoal as a case study for implementing a protection framework." Deep Sea Research Part II: Topical Studies in Oceanography. 176 (2020): 104715.
Résumé: There is a growing interest in the management of seamounts of the Southwestern Indian Ocean (SWIO) both in waters under national jurisdictions and in the Areas Beyond National Jurisdiction (ABNJ). New scientific knowledge has been gathered through various oceanographic cruises during the past decade, and new agreements are under consideration globally to promote conservation and sustainable use of the biodiversity in the ABNJ, where the deep sea ecosystems associated with seamounts are a growing matter of concern. SWIO seamounts have attracted the interests of fishers since the 1960s, and contracts for mining exploration have been granted recently. Seamounts are known to shelter rich, fragile and poorly resilient ecosystems whose important ecological functions are threatened by various anthropogenic pressures. Whereas many seamounts and shoals are located in national waters, many others fall in the ABNJ, with no current legal status per se. To ensure conservation of their habitats and biodiversity, it is essential that protection measures are instigated under an internationally recognized legal and institutional framework. In this paper, we review the current state of such a framework relevant to seamounts, with emphasis on fisheries and conservation in the SWIO. An emblematic seamount, the Walters Shoal, is selected as a case study to discuss how it could become a fully-protected space in the ABNJ. As a large part of the SWIO is under the mandate of the Nairobi Convention (as a Regional Sea under the auspices of UNEP), guidelines are proposed to encourage dedicated seamount governance within the framework of this Convention.
|
|
Vianello, P., et al. "Ocean currents and gradients of surface layer properties in the vicinity of the Madagascar Ridge (including seamounts) in the South West Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104816.
Résumé: This work is part of the MADRidge Project special issue which aims to describe pelagic ecosystems in the vicinity of three prominent shallow seamounts in the South West Indian Ocean: one here named MAD-Ridge (240 m below the surface) plus Walters Shoal (18 m) on the Madagascar Ridge, and La Perouse (60 m) on the abyssal plain east of Madagascar. The three span latitudes 20 degrees S and 33 degrees S, some 1500 km. The study provides the background oceanography for the once-off, multidisciplinary snapshot cruise studies around the seamounts. As life on seamounts is determined by factors such as summit depth, proximity to the light layers of the ocean, and the ambient circulation, a first description of regional spatial-field climatologies (16-22 years) and monthly along-ridge gradients of surface wind (driving force), water column properties of sea surface temperature, mixed layer depth, chlorophyll-a and eddy kinetic energy, plus ocean currents is provided. Being relevant to many applications in the study domain, these properties in particular reveal contrasting environments along the Madagascar Ridge and between the three seamounts that should drive biological differences. Relative to the other two seamounts, MAD-Ridge is in the more extreme situation, being at the end of the East Madagascar Current, where it experiences sturdy, albeit variable, currents and the frequent passing of mesoscale eddies.
|
|
2019 |
Annasawmy, P., et al. "Micronekton distributions and assemblages at two shallow seamounts of the south-western Indian Ocean: Insights from acoustics and mesopelagic trawl data." Prog. Oceanogr.. 178 (2019): 102161.
Résumé: Micronekton distributions and assemblages were investigated at two shallow seamounts of the south-western Indian Ocean using a combination of trawl data and a multi-frequency acoustic visualisation technique. La Pa rouse seamount (summit depth similar to 60 m) is located on the outskirts of the oligotrophic Indian South Subtropical Gyre (ISSG) province with weak mesoscale activities and low primary productivity all year round. The “MAD-Ridge” seamount (thus termed in this study; similar to 240 m) is located in the productive East African Coastal (EAFR) province with high mesoscale activities to the south of Madagascar. Higher micronekton species richness was recorded at MAD-Ridge compared to La Perouse. Resulting productivity at MAD-Ridge seamount was likely due to the action of mesoscale eddies advecting productivity and larvae from the Madagascar shelf rather than local dynamic processes such as Taylor column formation. Mean micronekton abundance/biomass, as estimated from mesopelagic trawl catches, were lower over the summit compared to the vicinity of the seamounts, due to net selectivity and catchability and depth gradient on micronekton assemblages. Mean acoustic densities in the night shallow scattering layer (SSL: 10-200 m) over the summit were not significantly different compared to the vicinity (within 14 nautical miles) of MAD-Ridge. At La Perouse and MAD-Ridge, the night and day SSL were dominated by common diel vertically migrant and non-migrant micronekton species respectively. While seamount-associated mesopelagic fishes such as Diaphus suborbitalis (La Perouse and MAD-Ridge) and Benthosema fibula= performed diel vertical migrations (DVM) along the seamounts' flanks, seamount-resident benthopelagic fishes, including Cookeolus japonicus (MAD-Ridge), were aggregated over MAD-Ridge summit. Before sunrise, mid-water migrants initiated their vertical migration from the intermediate to the deep scattering layer (DSL, La Perouse: 500-650 m; MAD-Ridge: 400-700 m) or deeper. During sunrise, the other taxa contributing to the night SSL exhibited a series of vertical migration events from the surface to the DSL or deeper until all migrants have reached the DSL before daytime. Possible mechanisms leading to the observed patterns in micronekton vertical and horizontal distributions are discussed. This study contributes to a better understanding of how seamounts influence the DVM, horizontal distribution and community composition of micronekton and seamount-associated/resident species at two poorly studied shallow topographic features in the south-western Indian Ocean.
|
|
2018 |
Coelho, R., et al. "Distribution patterns and population structure of the blue shark (Prionace glauca) in the Atlantic and Indian Oceans." Fish. Fish.. 19.1 (2018): 90–106.
Résumé: The blue shark (Prionace glauca) is the most frequently captured shark in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. As part of cooperative scientific efforts for fisheries and biological data collection, information from fishery observers, scientific projects and surveys, and from recreational fisheries from several nations in the Atlantic and Indian Oceans was compiled. Data sets included information on location, size and sex, in a total of 478,220 blue shark records collected between 1966 and 2014. Sizes ranged from 36 to 394cm fork length. Considerable variability was observed in the size distribution by region and season in both oceans. Larger blue sharks tend to occur in equatorial and tropical regions, and smaller specimens in higher latitudes in temperate waters. Differences in sex ratios were also detected spatially and seasonally. Nursery areas in the Atlantic seem to occur in the temperate south-east off South Africa and Namibia, in the south-west off southern Brazil and Uruguay, and in the north-east off the Iberian Peninsula and the Azores. Parturition may occur in the tropical north-east off West Africa. In the Indian Ocean, nursery areas also seem to occur in temperate waters, especially in the south-west Indian Ocean off South Africa, and in the south-east off south-western Australia. The distributional patterns presented in this study provide a better understanding of how blue sharks segregate by size and sex, spatially and temporally, and improve the scientific advice to help adopt more informed and efficient management and conservation measures for this cosmopolitan species.
|
|
Rabearisoa, N., et al. "Toothed whale and shark depredation indicators: A case study from the Reunion Island and Seychelles pelagic longline fisheries." PLOS ONE. 13.8 (2018): e0202037.
Résumé: Depredation in marine ecosystems is defined as the damage or removal of fish or bait from fishing gear by predators. Depredation raises concerns about the conservation of species involved, fisheries yield and profitability, and reference points based on stock assessment of depredated species. Therefore, the development of accurate indicators to assess the impact of depredation is needed. Both the Reunion Island and the Seychelles archipelago pelagic longline fisheries targeting swordfish (Xiphias gladius) and tuna (Thunnus spp.) are affected by depredation from toothed whales and pelagic sharks. In this study, we used fishery data collected between 2004 and 2015 to propose depredation indicators and to assess depredation levels in both fisheries. For both fisheries, the interaction rate (depredation occurrence) was significantly higher for shark compared to toothed whale depredation. However, when depredation occurred, toothed whale depredation impact was significantly higher than shark depredation impact, with higher depredation per unit effort (number of fish depredated per 1000 hooks) and damage rate (proportion of fish depredated per depredated set). The gross depredation rate in the Seychelles was 18.3%. A slight increase of the gross depredation rate was observed for the Reunion Island longline fleet from 2011 (4.1% in 2007–2010 and 4.4% in 2011–2015). Economic losses due to depredation were estimated by using these indicators and published official statistics. A loss of 0.09 EUR/hook due to depredation was estimated for the Reunion Island longline fleet, and 0.86 EUR/hook for the Seychelles. These results suggest a southward decreasing toothed whale and shark depredation gradient in the southwest Indian Ocean. Seychelles depredation levels are among the highest observed in the world revealing this area as a “hotspot” of interaction between pelagic longline fisheries and toothed whales. This study also highlights the need for a set of depredation indicators to allow for a global comparison of depredation rates among various fishing grounds worldwide.
|
|
2017 |
Sardenne, F., et al. "Trophic structures in tropical marine ecosystems: a comparative investigation using three different ecological tracers." Ecol. Indic.. 81 (2017): 315–324.
Résumé: We looked at how three ecological tracers may influence the characterization and interpretation of trophic structures in a tropical marine system, with a view to informing tracer(s) selection in future trophic ecology studies. We compared the trophic structures described by stable isotope compositions (carbon and nitrogen), the total mercury concentration (THg) and levels of essential fatty acids (EFA) at both the individual and species level. Analyses were undertaken on muscle tissue samples from fish and crustacean species caught in the waters surrounding the Seychelles. The carbon isotope composition (delta C-13) correlated to the proportion of arachidonic acid (ARA), whereas the nitrogen isotope composition (delta N-15) correlated to the proportion of docosahexaenoic acid (DHA) and THg. At the individual level, trophic position obtained with these three last tracers are similar. In ' contrast, the eicosapentaenoic acid (EPA) was not clearly correlated to any of the tracers. At the species level, the use of EFA (ARA and DHA), as compared to stable isotopes, resulted in slight structural modifications, mainly in the middle trophic levels. For example, the EFA overestimated the trophic positions of Thunnus alalunga and Etelis coruscans but underestimated the trophic positions of other snappers and groupers. While ARA mainly originates from coastal/benthic areas, DHA is conserved throughout the food web and may be used as a proxy indicator of trophic position. However, metabolic disparities can affect ecological tracers and in turn, distort the trophic structures derived from their results. This is especially true for species with close trophic ecologies. Despite these caveats, we think that analysing at the individual level the wealth of ARA, DHA and THg data that has already been obtained through earlier nutrition or food security studies would enhance our understanding of trophic structures.
|
|
Sardenne, F., et al. "Biological and environmental influence on tissue fatty acid compositions in wild tropical tunas." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 204 (2017): 17–27.
Résumé: This study examined the fatty acid composition of three sympatric tropical tuna species (bigeye Thunnus obesus, yellowfin T. albacares and skipjack tuna Kastuwonus pelamis) sampled in the Western Indian Ocean in 2013. The fatty acid compositions of neutral and polar lipids, respectively involved in energy storage and cell membrane structure, were explored and compared in four tissues (red and white muscles, liver and gonads), according to biological (size, sex and maturity) and environmental (season and area) factors. The liver and the red muscle were the fattest tissues (i.e., higher levels of storage lipids) in all species and polar lipids were the lowest in the white muscle. Species and tissue types explained most differences in fatty acid compositions, while environmental factors had limited effects, except in the hepatic cell membrane where fatty acid composition varied with monsoons. Docosahexaenoic acid (22:6n-3) was the major fatty acid in both polar and neutral lipid fractions, especially in muscles. Eicosapentaenoic acid (20:5n-3) and oleic acid (18:1n-9) were in higher proportion in neutral than in polar lipids. Arachidonic acid (20:4n-6) and 22:6n-3, together with docosapentaenoic acid (22:5n-6) and stearic acid (18:0), showed preferential accumulation in polar lipids. 20:4n-6 was particularly involved in cell membranes of ovary and white muscle. Overall, an important inter-individual variability in fatty acid compositions of structural lipids was found within tissue types despite considering biological factors that are most likely to influence this type of lipids. It suggests that fatty acid profiles are influenced by individual-specific behaviors.
|
|
2016 |
Dhurmeea, Z., et al. "Reproductive Biology of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean." Plos One. 11.12 (2016): e0168605.
Résumé: The reproductive biology of albacore tuna, Thunnus alalunga, in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency and fecundity. From 2013 to 2015, a total of 923 female and 867 male albacore were sampled. A bias in sex ratio was found in favor of females with fork length (LF) < 100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF. Albacore spawn on average every 2.2 days within the spawning region and spawning months, from November to January. Batch fecundity ranged between 0.26 and 2.09 million oocytes and the relative batch fecundity (mean ± standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. The study provides new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually assist the fishery to be sustainable for future generations.
|
|
Escalle, L., et al. "Environmental factors and megafauna spatio-temporal co-occurrence with purse-seine fisheries." Fish. Oceanogr.. 25.4 (2016): 433–447.
Résumé: Tropical tuna purse-seine fisheries spatially co-occur with various megafauna species, such as whale sharks, dolphins and baleen whales in all oceans of the world. Here, we analyzed a 10-year (2002–2011) dataset from logbooks of European tropical tuna purse-seine vessels operating in the tropical Eastern Atlantic and Western Indian Oceans, with the aim of identifying the principle environmental variables under which such co-occurrence appear. We applied a Delta-model approach using Generalized Additive Models (GAM) and Boosted Regression Trees (BRT) models, accounting for spatial autocorrelation using a contiguity matrix based on a residuals autocovariate (RAC) approach. The variables that contributed most in the models were chlorophyll-a concentration in the Atlantic Ocean, as well as depth and monsoon in the Indian Ocean. High co-occurrence between whale sharks, baleen whales and tuna purse-seine fisheries were mostly observed in productive areas during particular seasons. In light of the lack of a full coverage scientific observer on board program, the large, long-term dataset obtained from logbooks of tuna purse-seine vessels is highly important for identifying seasonal and spatial co-occurrence between the distribution of fisheries and megafauna, and the underlying environmental variables. This study can help to design conservation management measures for megafauna species within the framework of spatial fishery management strategies.
|
|
Grande, M., et al. "Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle." J. Fish Biol.. 89.5 (2016): 2434–2448.
Résumé: The lipid composition of somatic and reproductive tissues was determined for female skipjack tuna Katsuwonus pelamis caught in the western Indian Ocean between latitude 10 degrees N and 20 degrees S and longitude 40 degrees and 70 degrees E. The highest total lipid (TL) contents were in the liver and gonads, with white muscle levels approximately three-fold lower. Three lipid classes dominated: triacylglycerols (TAG), sterol esters and wax esters (SE-WE) and phospholipids (PL). Collectively, these accounted for between 70 and 80% of TLs. Changes in lipid concentrations were evaluated over the maturation cycle. Immature fish had the lowest gonad and liver TL levels; concentrations of TL, TAG, SE-WE and PL accumulated from immature to mature (spawning-capable) phase, reflecting sustained vitellogenic activity of the liver and a transfer of lipids to developing oocytes from the onset of vitellogenesis. Gonado-somatic and hepato-somatic indices were positively correlated with each other and positively related to TL in the gonads and liver. Fulton's condition index and lipid concentrations in muscle did not vary significantly over the maturation cycle; fat content in the main storage tissues was undepleted as the ovary developed. Hence, K. pelamis apparently supports reproduction directly from food intake over the breeding season. In the gonads, reserve lipids (SE-WE and TAG) and sterols were related to batch fecundity but this was not the case for somatic and hepatic tissues. These results suggest that K. pelamis utilizes an income breeding strategy.
|
|
Quétel, C., et al. "Iles Eparses (SW Indian Ocean) as reference ecosystems for environmental research." Acta Oecologica (2016): 1–8.
Résumé: TAAF ensures since 2007 the management of 5 small tropical islands lying in the southwestern Indian Ocean: the Iles Eparses. These islands share an exceptional natural heritage including many marine and terrestrial endemic species. At a regional scale the Iles Eparses are some of the most pristine ecosystems, largely preserved from anthropogenic impacts due to their geographical isolation and a historically very limited human occupation. In this context, TAAF wished that Iles Eparses become unique natural laboratories for earth scientists and environmental process observation – like climate change impacts – but also sustainable biodiversity sanctuaries for which the scientific community should provide baseline ecological data to inform on appropriate conservation tools. An inter-agency research consortium emerged in 2009 to meet this commitment for the Iles Eparses. This program was intended to set a science framework in accordance with France' objectives for Research and Conservation. It enabled between 2009 and 2014 the implementation of 18 cross-disciplinary research projects ranging from geology to ecology and represented by the variety of the proposed articles in this special issue. Altogether research projects have dramatically increased knowledge on the Iles Eparses' ecosystems and have provided the first overview of their diversity, their functions and their dynamics and its determinants. In particular applied research efforts have supplied a significant amount of ecological evidence that is now available to develop optimal conservation strategy to ensure the Iles Eparses' long-term biodiversity value. These findings point out that the continuation of research activity in the Iles Eparses should be considered a priority.
|
|
2015 |
Dortel, E., et al. "An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna." Fisheries Research. 163.Si (2015): 69–84.
Résumé: The Indian Ocean Tuna Tagging Program provided a unique opportunity to collect demographic data on the key commercially targeted tropical tuna species in the Indian Ocean. In this paper, we focused on estimating growth rates for one of these species, yellowfin (Thunnus albacares). Whilst most growth studies only draw on one data source, in this study we use a range of data sources: individual growth rates derived from yellowfin that were tagged and recaptured, direct age estimates obtained through otolith readings, and length-frequency data collected from the purse seine fishery between 2000 and 2010. To combine these data sources, we used an integrated Bayesian model that allowed us to account for the process and measurement errors associated with each data set. Our results indicate that the gradual addition of each data type improved the model's parameter estimations. The Bayesian framework was useful, as it allowed us to account for uncertainties associated with age estimates and to provide additional information on some parameters (e.g., asymptotic length). Our results support the existence of a complex growth pattern for Indian Ocean yellowfin, with two distinct growth phases between the immature and mature life stages. Such complex growth patterns, however, require additional information on absolute age of fish and transition rates between growth stanzas. This type of information is not available from the data. We suggest that bioenergetic models may address this current data gap. This modeling approach explicitly considers the allocation of metabolic energy in tuna and may offer a way to understand the underlying mechanisms that drive the observed growth patterns.
|
|
Gaertner, D., and J. - P. Hallier. "Tag shedding by tropical tunas in the Indian Ocean and other factors affecting the shedding rate." Fisheries Research. 163.Si (2015): 98–105.
Résumé: A key objective of the Regional Tuna Tagging Project Indian Ocean was to estimate tag-shedding rates, Type-I (immediate tag shedding) and Type-II (long-term tag shedding). To assess this, a series of double-tagging experiments (26,899 double tags released with 4555 recoveries) were conducted as part of the broader tagging program. After omitting data from tags placed by less experienced taggers, the results of our analyses did not show any evidence that individual differences between taggers (i.e., a tagger effect) impacted estimates of tag-shedding rates. However, it was shown that the probability of retaining the second tag (inserted in the left side of the fish) was larger than retaining the first tag (inserted in the right side, i.e., the side typically tagged in single-tagging experiments). We used a Bayesian model averaging approach to account for model uncertainty in the estimates of the parameters a and L used to calculate the probability of tag retention Q(t)= alpha e-((L t)) for the right tag. The parameter estimates were alpha = 0.993 and L (per year) = 0.030 (skipjack); alpha = 0.972 and L (per year) = 0.040 (yellowfin); and alpha = 0.990 and L (per year) = 0.021 (bigeye). These results agree with estimates obtained by other large-scale tropical tuna tagging projects. We showed that tag loss has a moderate impact on the underestimation of the exploitation rate (bias = 2-6% depending on the tuna species). However, non-reporting leads to a bias of around 7% when using the high reporting rate estimate of purse seiners. Finally, tag shedding (specifically Type-II shedding) modified the individual weights of the samples of recaptures. Consequently, the total instantaneous mortality estimates (Z; calculated from mean times-at-large) were reduced by a range of 1-3%.
|
|
Lezama-Ochoa, N., et al. "Biodiversity in the by-catch communities of the pelagic ecosystem in the Western Indian Ocean." Biodivers Conserv. 24.11 (2015): 2647–2671.
Résumé: Diversity in the by-catch communities from the pelagic ecosystem in the tropical tuna purse seine fishery has been poorly studied. This study uses different biodiversity measures to compare drifting fish aggregating devices (FADs) and Free School sets (sets made on schools of tuna) of the Western Indian Ocean. Data was collected from observer programs carried out by the European Union between 2003 and 2010 on board Spanish and French fleets. Alpha (species diversity of a particular area) and Beta diversity (difference in species composition between different areas) was analyzed to assess differences in the number of species, abundances and the species composition between areas and fishing modes. Generalized additive models were undertaken to explore which geographical/environmental variables explain the distribution of species richness index and Shannon diversity index in both fishing modes. Results showed that by-catch species in FAD communities may be used as observatories of surface pelagic biodiversity in combination with Free School communities. FAD communities were more diverse with higher number of species (74 species) and evenly distributed than Free School communities (56 species). However, environmental variables played a more important role in Free School communities. Somalia area and Mozambique Channel were the areas with highest biodiversity rates in both fishing modes. This work contributed for the future implementation of the EAFM to manage the pelagic ecosystem in a holistic and more integrated way.
|
|
MUTHS, D., E. TESSIER, and J. BOURJEA. "Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries." Marine Ecology-an Evolutionary Perspective. 36.3 (2015): 447–461.
Résumé: The reef fauna connectivity of the West Indian Ocean (WIO) is one of the least studied globally. Here we use genetic analyses of the grouper Epinephelus merra (Bloch 1793) to determine patterns of connectivity and to identify barriers to dispersal in this WIO marine area. Phylogeographic and population-level analyses were conducted on cytochrome b sequences and microsatellites (13 loci) from 557 individuals sampled in 15 localities distributed across the West Indian Ocean. Additional samples from the Pacific Ocean were used to benchmark the WIO population structure. The high level of divergence revealed between Indian and Pacific localities (of about 4.5% in sequences) might be the signature of the major tectonic and climatic changes operating at the Plio-Pleistocene transition, congruently with numerous examples of Indo-Pacific speciation. In comparison, the E. merra sequences from the Indian Ocean constitute a monophyletic clade with a low average genetic distance (d < 0.5%). However both genetic markers indicated some structure within this ocean. The main structure revealed was the isolation of the Maldives from the WIO localities (a different group signature identified by clustering analysis, great values of differentiation). Both marker types reveal further significant structure within the WIO, mainly the isolation of the Mascarene Islands (significant AMOVA and isolation-by-distance patterns) and some patchy structure between the northernmost localities and within the Mozambique Channel. The WIO genetic structure of E. merra appeared congruent with main biogeographic boundaries and oceanographic currents.
|
|
ROA PASCUALI, L., H. Demarcq, and A. - E. Nieblas. "Detection of mesoscale thermal fronts from 4km data using smoothing techniques: Gradient-based fronts classification and basin scale application." Remote Sensing of Environment. 164 (2015): 225–237.
Résumé: In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.
|
|
2014 |
Bourjea, J., et al. "Marine turtle interaction with purse-seine fishery in the Atlantic and Indian oceans: Lessons for management." Biological Conservation. 178 (2014): 74–87.
Résumé: Bycatch of endangered marine turtles is a growing issue for the management of all fisheries, including the oceanic purse-seine fishery. The aim of this study was to assess the spatial and temporal variation in bycatch rates of these species in the entire European purse-seine fishery operating in the Atlantic and Indian oceans. The study was based on data collected through observer programs from 1995 to 2011. During that period, a total of 15 913 fishing sets were observed, including 6 515 on Drifting Fish Aggregating Devices (DFADs) and 9 398 on free swimming schools, representing a global coverage of 10.3% and 5.1% of the total fishing activity in the Atlantic and Indian Ocean, respectively. Moreover, from 2003 to 2011, 14 124 specific observations were carried out on DFADs to check turtle entanglement in the net covering DFADs. We found that the purse-seine fishery has a very low impact on marine turtles. We estimated that the annual number of individuals incidentally captured was 218 (SD = 150) and 250 (SD = 157) in the Atlantic and Indian Ocean, respectively, with more than 75% being released alive. The present study also investigated the impact of DFADs; which is considered a key conservation issue for this fishery. Drifting objects may play a key role in aggregating juveniles of marine turtles, implying the need for improving their construction to avoid entanglement (e.g. avoiding nets in the structure); however, based on our study it is not the main source of incidental captures of marine turtles in this fishery.
|
|
Dueri, S., L. Bopp, and O. Maury. "Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution." Global Change Biology. 20.3 (2014): 742–753.
Résumé: Climate-induced changes in the physical, chemical, and biological environment are expected to increasingly stress marine ecosystems, with important consequences for fisheries exploitation. Here, we use the APECOSM-E numerical model (Apex Predator ECOSystem Model – Estimation) to evaluate the future impacts of climate change on the physiology, spatial distribution, and abundance of skipjack tuna, the worldwide most fished species of tropical tuna. The main novelties of our approach lie in the mechanistic link between environmental factors, metabolic rates, and behavioral responses and in the fully three dimensional representation of habitat and population abundance. Physical and biogeochemical fields used to force the model are provided by the last generation of the IPSL-CM5 Earth System Model run from 1990 to 2100 under a &8216;business-as-usual&8217; scenario (RCP8.5). Our simulations show significant changes in the spatial distribution of skipjack tuna suitable habitat, as well as in their population abundance. The model projects deterioration of skipjack habitat in most tropical waters and an improvement of habitat at higher latitudes. The primary driver of habitat changes is ocean warming, followed by food density changes. Our projections show an increase of global skipjack biomass between 2010 and 2050 followed by a marked decrease between 2050 and 2095. Spawning rates are consistent with population trends, showing that spawning depends primarily on the adult biomass. On the other hand, growth rates display very smooth temporal changes, suggesting that the ability of skipjack to keep high metabolic rates in the changing environment is generally effective. Uncertainties related to our model spatial resolution, to the lack or simplification of key processes and to the climate forcings are discussed.
|
|
Jaquemet, S., et al. "Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.No spécial (2014): 200–211.
Résumé: The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronelcton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sub) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplanlcton biomass close to the surface. Our results highlight the importance of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.
|
|
Kaplan, D., et al. "Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives." Ices Journal of Marine Science. 71.7 (2014): 1728–1749.
Résumé: Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, by catch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.
|
|
NIEBLAS, A. - E., et al. "Front variability and surface ocean features of the presumed southern bluefin tuna spawning grounds in the tropical southeast Indian Ocean." Deep-sea Research Part II-topical Studies In Oceanography. 107 (2014): 64–76.
Résumé: The southern bluefin tuna (SBT, Thunnus maccoyii) is an ecologically and economically valuable fish. However, surprisingly little is known about its critical early life history, a period when mortality is several orders of magnitude higher than at any other life stage, and when larvae are highly sensitive to environmental conditions. Ocean fronts can be important in creating favourable spawning conditions, as they are a convergence of water masses with different properties that can concentrate planktonic particles and lead to enhanced productivity. In this study, we examine the front activity within the only region where SBT have been observed to spawn: the tropical southeast Indian Ocean between Indonesia and Australia (10 degrees S-20 degrees S, 105 degrees E-125 degrees E). We investigate front activity and its relationship to ocean dynamics and surface features of the region. Results are also presented for the entire Indian Ocean (30 degrees N-45 degrees S, 20 degrees E-140 degrees E) to provide a background context. We use an extension of the Cayula and Cornillon algorithm to detect ocean fronts from satellite images of sea surface temperature (SST) and chlorophyll-a concentration (chl-a). Front occurrence represents the probability of occurrence of a front at each pixel of an image. Front intensity represents the magnitude of the difference between the two water masses that make up a front. Relative to the rest of the Indian Ocean, both SST and chl-a fronts in the offshore spawning region are persistent in occurrence and weak in intensity. Front occurrence and intensity along the Australian coast are high, with persistent and intense fronts found along the northwest and west coasts. Fronts in the tropical southeast Indian Ocean are shown to have strong annual variability and some moderate interannual variability. SST front occurrence is found to lead the Southern Oscillation Index by one year, potentially linked to warming and wind anomalies in the Indian Ocean. The surface ocean characteristics of the offshore SBT spawning region are found to be particularly stable compared to the rest of the Indian Ocean in terms of stable SST, low eddy kinetic energy, i.e., low mesoscale eddy activity, and low chl-a. However, this region has high front occurrence, but low front intensity of both SST and chl-a fronts. The potential impact of these oceanic features for SBT spawning is discussed.
|
|
2012 |
Govinden, R., et al. "Movement Behaviour of Skipjack (Katsuwonus Pelamis) and Yellowfin (Thunnus Albacares) Tuna at Anchored Fish Aggregating Devices (FADs) in the Maldives, Investigated by Acoustic Telemetry." Aquatic Living Resources. FirstView (2012).
|
|
2009 |
Dandonneau, Y., et al. "Air-sea interactions in the Seychelles-Chagos thermocline ridge region." Bull. Amer. Meteorol. Soc.. 90.1 (2009): 45–61.
Résumé: A field experiment in the southwestern Indian Ocean provides new insights into ocean–atmosphere interactions in a key climatic region.
|
|
Kolasinski, J., et al. "Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian Ocean." Marine Ecology – Progress Series. 386 (2009): 181–195.
Résumé: We analyzed stomach contents and muscle isotopic composition (delta C-13, delta N-15) of yellowstripe goatfish Mulloidichthys flavolineatus from a coral reef to investigate size-related dietary changes and resource or habitat partitioning. Juveniles (< 12 cm total length [TL]), young adults (12 <= TL < 17 cm) and adults (>= 17 cm TL) showed a high diet overlap, especially between juveniles and young adults. According to stomach contents analysis, M. flavolineatus widens its prey spectrum with increasing size from a common prey pool that includes polychaetes, tanaids and harpacticoid copepods. We observed a significant increase in delta C-13 values (from -17.1 +/- 0.5 parts per thousand for juveniles to -10.7 +/- 0.8 parts per thousand for adults), which were correlated to fish size. Adults (delta N-15 mean of 11.1 +/- 1.8 parts per thousand) were one trophic level above juveniles and young adults (7.7 +/- 0.5 and 7.4 +/- 0.5 parts per thousand, respectively). These patterns of isotopic changes confirmed ontogenetic dietary shifts. However, trophodynamics can be influenced by physiological factors such as growth and sexual maturity. M flavolineatus shift from a pelagic to a macrobenthic diet, which is equilibrated at the adult stage. Results from combined stomach contents (prey volume) and stable isotope analyses suggested a dominant contribution of polychaetes (macrofauna), possibly through selective feeding. Conversely, on the basis of prey volume and stable isotope data, meiofauna did not feature significantly in the diet despite their high abundance in stomachs. Two adult groups were distinguished based on their delta N-15 values (11.9 +/- 0.8 and 7.8 +/- 0.6 parts per thousand), indicating possible stage-specific partitioning in habitat use inside the reef.
|
|
Van der Elst, R. P., et al. "Nine nations, one ocean: A benchmark appraisal of the South Western Indian Ocean Fisheries Project (2008–2012)." Ocean Coastal Manage.. 52 (2009): 258–267.
Résumé: Coastal and island states of the Western Indian Ocean lack scientific and management capacity to draw sustainable benefits from their Exclusive Economic Zones. Declining ecosystem services and unregulated fishing has prompted nine riparian countries to develop a regional framework for capacity building and scientific development towards collective management of shared resources. Supported by the Global Environment Facility (GEF), the Agulhas and Somali Currents large marine ecosystems programme consists of three inter-related modules, supported by different agencies: land-based impacts on the marine environment (UNEP); productivity, ecosystem health and nearshore fisheries (UNDP) and transboundary shared and migrating fisheries resources (World Bank). The latter is the South Western Indian Ocean Fisheries Project (SWIOFP), a 5-year joint data gathering and fisheries assessment initiative. SWIOFP is a prelude to long-term cooperative fisheries management in partnership with the newly established FAO–South Western Indian Ocean Fisheries Commission (SWIOFC). We describe the development of SWIOFP as a model of participatory regional scientific cooperation and collective ocean management.
© 2009 Elsevier Ltd. All rights reserved.
|
|