|
Desvignes, T., Fostier, A., Fauvel, C., & Bobe, J. (2013). The Nme gene family in fish. Fish physiology and biochemistry, 39(1 M3 -; Research Support, Non-U.S. Gov't), 53–58.
Résumé: The Nme gene family, also known as Nm23 or NDPK, is a very ancient gene family that can be found in all kingdoms of life. In the late eighties, a gene of the Nme family, NME1, was identified as the first metastatic suppressor gene, resulting in a major interest for this family. Due to the complexity of the family, the need for a unified and evolutionary-supported gene nomenclature was recently stressed by the scientific community. Based on a complete evolutionary history study of the gene family in metazoans and vertebrates, a unified nomenclature was recently proposed and accepted by gene nomenclature consortia. In addition to its well-documented role in tumor metastasis, members of the Nme family are also involved in a wide variety of cellular and physiological processes. Available data in non-mammalian species remain, however, scarce with the noticeable exception of Drosophila in which a major role in development was reported. In fish, very few studies have specifically investigated the role of nme genes. Several transcriptomic and proteomic studies have, however, revealed the expression of nme genes in various fish organs and tissues, in mature oocytes, and during embryonic development. Altogether, interest for the Nme gene family in fish is growing and new functions/roles in fish biology are expected to be discovered in the forthcoming years. Here, we briefly review the current knowledge of the Nme family in fish.
|
|
|
Elisabeth, N. H., Caro, A., Cesaire, T., Mansot, J. - L., Escalas, A., Sylvestre, M. - N., et al. (2014). Comparative modifications in bacterial gill-endosymbiotic populations of the two bivalves Codakia orbiculata and Lucina pensylvanica during bacterial loss and reacquisition. FEMS microbiology ecology, 89(3).
Résumé: Until now, the culture of sulphur-oxidizing bacterial symbionts associated with marine invertebrates remains impossible. Therefore, few studies focused on symbiont's physiology under stress conditions. In this study, we carried out a comparative experiment based on two different species of lucinid bivalves (Codakia orbiculata and Lucina pensylvanica) under comparable stress factors. The bivalves were starved for 6months in sulphide-free filtered seawater. For C.orbiculata only, starved individuals were then put back to the field, in natural sediment. We used in situ hybridization, flow cytometry and X-ray fluorescence to characterize the symbiont population hosted in the gills of both species. In L.pensylvanica, no decrease in symbiont abundance was observed throughout the starvation experiment, whereas elemental sulphur slowly decreased to zero after 3months of starvation. Conversely, in C.orbiculata, symbiont abundance within bacteriocytes decreased rapidly and sulphur from symbionts disappeared during the first weeks of the experiment. The modifications of the cellular characteristics (SSC – relative cell size and FL1 – genomic content) of the symbiotic populations along starvation were not comparable between species. Return to the sediment of starved C.orbiculata individuals led to a rapid (2-4weeks) recovery of symbiotic cellular characteristics, comparable with unstressed symbionts. These results suggest that endosymbiotic population regulation is host-species-dependent in lucinids. 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
|
|
|
McKenzie, D. J., Estivales, G., Svendsen, J. C., Steffensen, J. F., & Agnese, J. - F. (2013). Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus aphyosemion. PloS one, 8(1).
Résumé: In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion) occur in discrete altitudinal ranges, low altitude species (LA, sea level to 350 m) or high altitude species (HA, 350 to 900 m). We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass 350 mg) were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation) were compared with animals raised in captivity at 25°C (F1 generation) to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA) response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required 14 h to complete the SDA, whereas the HA required only 7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.
|
|
|
Secor, S. M., & Lignot, J. - H. (2010). Morphological plasticity of vertebrate aestivation. Progress in molecular and subcellular biology, 49, 183–208.
Résumé: Aestivation or daily torpor is an adaptive tactic to survive hot and dry periods of low food availability, and has been documented for species of lungfishes, teleost fishes, amphibians, reptiles, birds, and mammals. Among these species, aestivation is characterized by inactivity and fasting, and for lungfishes and amphibians the formation of a cocoon around the body to retard water loss. While metabolic and physiological changes to aestivation have been well examined, few studies have explored the morphological responses of organs and tissues to aestivation. Predictably, inactive tissues such as skeletal muscles and those of the gastrointestinal tract would regress during aestivation, and thus aid in the reduction of metabolic rate. African lungfishes experience changes in the structure of their skin, gills, lungs, and heart during aestivation. For anurans, the group most thoroughly examined for morphological responses, aestivation generates significant decreases in gut mass and modification of the intestinal epithelium. Intestinal mucosal thickness, enterocyte size, and microvillus length of anurans are characteristically reduced during aestivation. We can surmise from laboratory studies on fasting reptiles, birds, and mammals that they likewise experience atrophy of their digestive tissues during torpor or aestivation. Aestivation-induced loss of tissue structure may be matched with a loss of cellular function generating an integrative decrease in tissue performance and metabolism. Ample opportunity exists to remedy the paucity of studies on the morphological plasticity of organs and tissues to aestivation and examine how such responses dictate tissue function during and immediately following aestivation.
|
|