Accueil | << 1 2 3 4 5 6 7 8 9 10 >> [11–19] |
![]() |
Albo-Puigserver, M., Munoz, A., Navarro, J., Coll, M., Pethybridge, H., Sanchez, S., et al. (2017). Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 74–82.
Résumé: Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colitis, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy values in ecosystem assessment tools such as bioenergetic and food web models.
|
Almoussawi, A., Lenoir, J., Jamoneau, A., Hattab, T., Wasof, S., Gallet-Moron, E., et al. (2019). Forest fragmentation shapes the alpha-gamma relationship in plant diversity. J. Veg. Sci., .
Résumé: Questions Forest fragmentation affects biodiversity locally (alpha diversity) and beyond – at relatively larger scales (gamma diversity) – by increasing dispersal and recruitment limitations. Yet, does an increase in fragmentation affect the relationship between alpha and gamma diversity and what can we learn from it? Location Northern France. Methods We surveyed 116 forest patches across three fragmentation levels: none (continuous forest); intermediate (forest patches connected by hedgerows); and high (isolated forest patches). Plant species richness of both forest specialists and generalists was surveyed at five nested spatial resolutions across each forest patch: 1 m(2); 10 m(2); 100 m(2); 1,000 m(2); and total forest patch area. First, we ran log-ratio models to quantify the alpha-gamma relationship. We did that separately for all possible combinations of fragmentation level (none vs intermediate vs high) x spatial scale (e.g., alpha-1 m(2) vs gamma-10 m(2)) x species type (e.g., alpha-specialists vs gamma-specialists). We then used linear mixed-effects models to analyze the effect of fragmentation level, spatial scale, species type and all two-way interaction terms on the slope coefficient extracted from all log-ratio models. Results We found an interaction effect between fragmentation level and species type, such that forest specialists shifted from a linear (i.e., proportional sampling) to a curvilinear plateau (i.e., community saturation) relationship at low and high fragmentation, respectively, while generalists shifted from a curvilinear to a linear pattern. Conclusions The impact of forest fragmentation on the alpha-gamma relationship supports generalist species persistence over forest specialists, with contrasting mechanisms for these two guilds. As fragmentation increases, forest specialists shift from proportional sampling towards community saturation, thus reducing alpha diversity likely due to dispersal limitation. Contrariwise, generalists shift from community saturation towards proportional sampling, thus increasing alpha diversity likely due to an increase in the edge:core ratio. To ensure long-term conservation of forest specialists, one single large forest patch should be preferred over several small ones.
Mots-Clés: agricultural landscapes; alpha diversity; anthropogenic disturbances; assemblages; community assembly; community patterns; competition; connectivity; dispersal limitations; gamma diversity; habitat conservation strategies; habitat fragmentation; local-regional richness relationship; metacommunity dynamics; regional species richness; relative importance; saturation; specialists; succession
|
Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., et al. (2015). Global habitat preferences of commercially valuable tuna. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 102–112.
Résumé: In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalized Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided.
|
Bauer, R. K., Fromentin, J. - M., Demarcq, H., & Bonhommeau, S. (2017). Habitat use, vertical and horizontal behaviour of Atlantic bluefin tuna (Thunnus thynnus) in the Northwestern Mediterranean Sea in relation to oceanographic conditions. Deep Sea Research Part II: Topical Studies in Oceanography, , 248–261.
Résumé: We investigated the habitat utilization, vertical and horizontal behaviour of Atlantic bluefin tuna Thunnus thynnus (ABFT) in relation to oceanographic conditions in the northwestern Mediterranean Sea, based on 36 pop-up archival tags and different environmental data sets. Tags were deployed on early mature ABFT (127–255cm) between July and November in 2007-2014, on the shelf area off Marseille, France. The data obtained from these tags provided 1643 daily summaries of ABFT vertical behaviour over 8years of tag deployment. Based on a hierarchical clustering of this data, we could identify four principle daily vertical behaviour types, representing surface (≦10m) and subsurface (10–100m) orientation, moderate (50–200m) and deep (≧200m) diving behaviour. These vertical behaviour types showed seasonal variations with partly opposing trends in their frequencies. Accordingly, ABFT were more surface orientated during summer, while moderate diving behaviour was more common during winter. Depth time series data further revealed inverted day-night patterns for both of these periods. Tagged ABFT frequented the surface waters more regularly during daytime and deeper waters during the night in summer, while the opposite pattern was found in winter. Seasonal changes in the vertical behaviour of ABFT were accompanied by simultaneous changes in environmental conditions (SST, chla, thermal stratification). Accordingly, surface orientation and moderate diving behaviour appeared to be triggered by the thermal stratification of the water column, though less pronounced than previously reported for ABFT in the North Atlantic, probably indicating adaptive vertical behaviour related to the availability of epipelagic food resources (anchovies and sardines). Deep diving behaviour was particularly frequent during months of high biological productivity (February-May), although one recovered tag showed periodic and unusual long spike dives during summer-autumn, in relation to thermal fronts. Regional effects on the vertical behaviour of ABFT were identified through GAMs, with surface orientation being particularly pronounced in the Gulf of Lions, highlighting its suitability for an ongoing annual aerial survey program to estimate ABFT abundance in this region. In addition, increased levels of mesoscale activity/productivity (e.g. related to oceanic fronts) were detected in an area regularly utilized by ABFT, south of the Gulf of Lions, underlining its attractiveness as foraging ground. Kernel densities of geolocation estimates showed a seasonal shift in the horizontal distribution of ABFT from this “high-use” area towards the Gulf of Lions during summer, probably linked to the enhanced availability of epipelagic food resources at this time.
Mots-Clés: Archival tags; Fronts; habitat use; Spike dives; Thermal stratification; Thunnus thynnus
|
Ben Rais Lasram, F., Hattab, T., Nogues, Q., Beaugrand, G., Dauvin, J. C., Halouani, G., et al. (2020). An open-source framework to model present and future marine species distributions at local scale. Ecological Informatics, 59, 101130.
Résumé: Species Distribution Models (SDMs) are useful tools to project potential future species distributions under climate change scenarios. Despite the ability to run SDMs in recent and reliable tools, there are some misuses and proxies that are widely practiced and rarely addressed together, particularly when dealing with marine species. In this paper, we propose an open-source framework that includes (i) a procedure for homogenizing occurrence data to reduce the influence of sampling bias, (ii) a procedure for generating pseudo-absences, (iii) a hierarchical-filter approach, (iv) full incorporation of the third dimension by considering climatic variables at multiple depths and (v) building of maps that predict current and potential future ranges of marine species. This framework is available for non-modeller ecologists interested in investigating future species ranges with a user-friendly script. We investigated the robustness of the framework by applying it to marine species of the Eastern English Channel. Projections were built for the middle and the end of this century under RCP2.6 and RCP8.5 scenarios.
|