2019 |
Lett, C., et al. "Modeling larval dispersal for the gilthead seabream in the northwestern Mediterranean Sea." Marine Environmental Research (2019): 104781.
Résumé: To investigate dispersal and connectivity between spawning and lagoon nursery habitats of the gilthead seabream, Sparus aurata, in the Gulf of Lions (northwestern Mediterranean Sea), we modeled the potential transport of the species’ larvae between its supposed main spawning site in the region (the Planier Island) and two of its main local nursery areas (the coastal lagoons of Thau and Salses-Leucate). Passive larval drift simulations using a dispersal biophysical model showed a large variability in the possible trajectories from spawning to nursery areas and in the predicted ages for larvae arrival on the two nursery sites. The most common ages at arrival obtained in the simulations (20–60 days) are broadly consistent with previous modeling studies but contrast with the actual ages of the S. aurata post-larvae collected in 2016 and 2017 at time of the lagoon entrances (60–90 days, from otolith readings). The period between 25 and 70 days being critical for gilthead seabream larvae to acquire sufficient swimming, osmoregulatory, and olfactory abilities to enter coastal lagoons, we argue that ontogenic development plays a crucial role in the transport and local retention of S. aurata larvae in the studied region, explaining the discrepancy between simulation results and observed data.
|
|
2018 |
Queiros, Q., et al. "Dolphin predation pressure on pelagic and demersal fish in the northwestern Mediterranean Sea." Mar. Ecol.-Prog. Ser.. 603 (2018): 13–27.
Résumé: Sardine Sardina pilchardus, anchovy Engraulis encrasicolus and European hake Merluccius merluccius represent a significant part of the commercial landings in the Gulf of Lions (northwestern Mediterranean Sea). However, their stocks have shown severe declines during the last decades due to fishing pressure and/or environmental changes. The aim of this study was to estimate the current predation pressure of bottlenose dolphins Tursiops truncatus and striped dolphins Stenella coeruleoalba – which are abundant in the area-on sardine, anchovy and hake. To do so, we developed an original approach based on several data sets and models (aerial surveys, stomach contents, allometric and stock assessment models) and Monte Carlo simulations to incorporate various sources of uncertainty due to data limitations. Despite the uncertainties, the results showed that dolphin predation pressure on sardine and anchovy was extremely low in the Gulf of Lions (all simulations <0.5 % of the available stock), indicating little impact of dolphins on those populations. However, significant predation pressure on hake (median value: 23 %) was detected, a value which might have doubled in the last 30 yr because of hake overfishing. Overexploitation has thus reinforced the natural mortality of hake due to dolphin predation, but this predation pressure remains 2 to 3 times lower than that exerted by fisheries.
|
|
2016 |
Van Beveren, E., et al. "The fisheries history of small pelagics in the Northern Mediterranean." ICES J. Mar. Sci.. 73.6 (2016): 1474–1484.
Résumé: Since 2007, the biomass of sardine and anchovy in the NW Mediterranean has remained persistently low, whereas the biomass of the commercially low-valued sprat has exploded. Also, simultaneous decreases in condition, size, and/or age of these populations were observed. Altogether, this resulted in a drop in landings of small pelagics. To understand the amplitude of these events and to provide a baseline scenario against which current changes can be compared, we compiled exceptionally long landing series (1865-2013) of sardine, anchovy, and mackerel for different subregions of the southern French coast. We characterized the fluctuations of these landings and compared these with environmental drivers (sea surface temperature, Rhone river discharge, North Atlantic Oscillation, Western Mediterranean Oscillation-WeMO, and Atlantic Multidecadal Oscillation-AMO), using different time-series analyses. We also collated historical data to infer qualitative changes in fishing effort over time. A fishing effort related increase in landings was observed around 1962 for all three species, although current sardine landings have dropped below levels observed before this period. Sardine and anchovy landings were, respectively, positively and negatively related to the AMO index and anchovy landings were also positively related to the WeMO. We finished by discussing the potential role of the environmental variables and fishing on long-term fishery landings trends.
|
|
2013 |
BANARU, D., et al. "Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts." Journal Of Marine Systems. 111 (2013): 45–68.
Résumé: The Gulf of Lions ecosystemwas described using the Ecopath mass-balancemodel to characterise its structure and functioning and to examine the effects of themultispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of etaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input datawere based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish–squids represented keystone species. Important coupled pelagic–demersal–benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (>24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24–40 m) had the highest impact on most of the groups considered; while purse seines (12–24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.
|
|
Tournois, J., et al. "Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats." Estuarine Coastal and Shelf Science. 131 (2013): 182–193.
Résumé: The chemical composition of fish otoliths reflects that of the water masses that they inhabit. Otolith elemental compositions can, therefore, be used as natural tags to discriminate among habitats. However, for retrospective habitat identification to be valid and reliable for any adult, irrespective of its age, significant differences in environmental conditions, and therefore otolith signatures, must be temporally stable within each habitat, otherwise connectivity studies have to be carried out by matching year-classes to the corresponding annual fingerprints. This study investigated how various different combinations of chemical elements in otoliths could distinguish, over three separate years, between four coastal lagoon habitats used annually as nurseries by gilthead sea bream (Sparus aurata L.) in the Gulf of Lions (NW Mediterranean). A series of nine elements were measured in otoliths of 301 S. aurata juveniles collected in the four lagoons in 2008, 2010 and 2011. Percentages of correct re-assignment of juveniles to their lagoon of origin were calculated with the Random Forest classification method, considering every possible combination of elements. This revealed both spatial and temporal variations in accuracy of habitat identification, with correct re-assignment to each lagoon ranging from 44 to 99% depending on the year and the lagoon. There were also annual differences in the combination of elements that provided the best discrimination among the lagoons. Despite this, when the data from the three years were pooled, a combination of eight elements (B, Ba, Cu, Li, Mg, Rb, Sr and Y) provided greater than 70% correct re-assignment to each single lagoon, with a multi-annual global accuracy of 79%. When considering the years separately, discrimination accuracy with these elemental fingerprints was above 90% for 2008 and 2010. It decreased to 61% in 2011, when unusually heavy rainfall occurred, which presumably reduced chemical differences among several of the lagoons. This study highlights the need for multi-annual sampling, and multi-elemental analysis, when developing otolith microchemical fingerprints to explore nursery habitat use in coastal fishes.
|
|