Accueil | << 1 2 3 4 5 6 7 8 >> |
![]() |
Albo-Puigserver, M., Munoz, A., Navarro, J., Coll, M., Pethybridge, H., Sanchez, S., et al. (2017). Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 74–82.
Résumé: Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colitis, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy values in ecosystem assessment tools such as bioenergetic and food web models.
|
Albo-Puigserver, M., Navarro, J., Coll, M., Layman, C. A., & Palomera, I. (2016). Trophic structure of pelagic species in the northwestern Mediterranean Sea. J. Appl. Dev. Psychol., 47, 27–35.
Résumé: Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea. (C) 2016 Elsevier B.V. All rights reserved.
Mots-Clés: anchovy engraulis-encrasicolus; biscay northeast atlantic; Community structure; diet composition; food-web; Food web; hake merluccius-merluccius; horse mackerel; Isotopic niche; mackerel scomber-japonicus; Pelagic fish; sardine sardina-pilchardus; Seasonal; seasonal-changes; Stable isotopes; stable-isotopes; Trophic segregation
|
Aubree, F., David, P., Jarne, P., Loreau, M., Mouquet, N., & Calcagno, V. (2020). How community adaptation affects biodiversity-ecosystem functioning relationships. Ecol. Lett., 23(8), 1263–1275.
Résumé: Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine-tuning, and co-adapted communities, where traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-stability and biodiversity-invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity-productivity relationships were generally less positive among co-adapted communities, with reduced contribution of sampling effects. The effect of community-adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co-adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short-term experiments and observations following recent changes may not be safely extrapolated into the future, once eco-evolutionary feedbacks have taken place.
|
Bănaru, D., Diaz, F., Verley, P., Campbell, R., Navarro, J., Yohia, C., et al. (2019). Implementation of an end-to-end model of the Gulf of Lions ecosystem (NW Mediterranean Sea). I. Parameterization, calibration and evaluation. Ecological Modelling, 401, 1–19.
Résumé: An end-to-end model named OSMOSE-GoL has been built for the Gulf of Lions, the main French Mediterranean fishing area. This spatialized dynamic model links the coupled hydrodynamic and biogeochemical model Eco3M-S/SYMPHONIE (LTL – low trophic level model) to OSMOSE (HTL – high trophic level model). It includes 15 compartments of living organisms, five from the LTL model (i.e. nanophytoplankton, microphytoplankton, nanozooplankton, microzooplankton and mesozooplankton) and ten from the HTL model (northern krill, southern shortfin squid, European pilchard, European anchovy, European sprat, Atlantic horse mackerel, Atlantic mackerel, blue whiting, European hake and Atlantic bluefin tuna). With the exception of northern krill and European sprat, all HTL species are commercially exploited and undergo fisheries mortality pressure. The modeled species represent more than 70% of annual catches in this area. This paper presents the parameterization, calibration and evaluation of this model with satellite data for phytoplankton and with biomass, landings, diet and trophic level data for HTL groups. For most species, the diets in output of OSMOSE-GoL are similar to field and literature data in terms of dominant prey groups and species. However, some differences were observed. Various reasons may explain the mismatch between the modeled diet and field data. Benthic prey sometimes observed in the stomach content of the HTL predators were not modeled in OSMOSE-GoL. Field studies were carried out at specific periods and locations, while our data concern the period 2001–2004 and the entire modeled domain. Inter- and intra-annual variations in spatial distribution and density of prey may also explain these differences. The model estimates trophic level values similar to those cited in the literature for all the HTL compartments. These values are also close to the trophic levels estimated by a previous Ecopath model for the same area and period. Even though some improvements are still possible, this model may already be of use to explore fishery or Marine Protected Areas scenarios for socio-ecosystem management issues.
Mots-Clés: Ecosystem modeling; Osmose; Fisheries; Food web; Eco3M
|
BANARU, D., MELLON, C., ROOS, D., BIGOT, J. - L., SOUPLET, A., JADAUD, A., et al. (2013). Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts. Journal Of Marine Systems, 111, 45–68.
Résumé: The Gulf of Lions ecosystemwas described using the Ecopath mass-balancemodel to characterise its structure and functioning and to examine the effects of themultispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of etaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input datawere based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish–squids represented keystone species. Important coupled pelagic–demersal–benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (>24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24–40 m) had the highest impact on most of the groups considered; while purse seines (12–24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.
Mots-Clés: Gulf of Lions; Ecopath with Ecosim; Food web; Fishing impacts
|