|
Bodin, N., N'Gom-Ka, R., Ka, S., Thiaw, O. T., Morais, L. T. de, Le Loc'h, F., et al. (2013). Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere, 90(2), 150–157.
Résumé: The inorganic contamination of sediment and harvested molluscs was investigated in the mangrove environment of Southern West Senegal. Trace metals were analysed in surface sediments, two bivalves (Arca senilis and Crassostera gasar) and three gastropods (Conus spp., Hexaplex duplex and Pugilina morio) collected from four stations: Dionewar, Niodor and Falia localised in the Saloum Delta, and Fadiouth from the Petite Cote. A geochemical normalisation approach by using aluminium allowed for discrimination of sediment contamination among sites. Indeed, Fadiouth appeared highly contaminated with Cd, Hg and Ni compared to the Saloum Delta. For all mangrove sites, trace metals exhibited significant higher concentrations (on a dry weight basis) in shellfish compared to sediments, excepted for Ni and Pb. The distribution pattern followed a similar global trend in molluscs regardless of the spatio-temporal variability, with the predominance of Zn (80% of total metals) followed by Cu and Cd. However, strong differences of metal bioavailability and bioaccumulation in biota were demonstrated, revealing the requirement of employing a suite of organism bioindicators to monitor metal contamination in mangrove ecosystems. From an ecotoxicological point of view, trace metal levels in sediments from the Petite Cote and the Sine-Saloum Estuary were below the effects range-low (ERL) threshold limit of the sediment quality guidelines for adverse biological effects (SQGs). On the opposite, some concerns about Cd contamination of edible shellfish from Southern West Senegal were highlighted, from both the safety point of view of local populations' health, and the chemical quality point of view of exported resources.
|
|
|
Celeste Lopez-Abbate, M., Molinero, J. - C., Perillo, G. M. E., Barria de Cao, M. S., Pettigrosso, R. E., Guinder, V. A., et al. (2019). Long-term changes on estuarine ciliates linked with modifications on wind patterns and water turbidity. Mar. Environ. Res., 144, 46–55.
Résumé: Planktonic ciliates constitute a fundamental component among microzooplankton and play a prominent role in carbon transport at the base of marine food webs. How these organisms respond to shifting environmental regimes is unclear and constitutes a current challenge under global ocean changes. Here we examine a multi-annual field survey covering 25 years in the Bahfa Blanca Estuary (Argentina), a shallow, flood-plain system dominated by wind and tidal energy. We found that the estuary experienced marked changes in wind dominant regimes and an increase in water turbidity driven from the joint effect of persistent long-fetch winds and the indirect effect of the Southern Annular Mode. Along with these changes, we found that zooplankton components, i.e. ciliates and the dominant estuarine copepod Acartia tonsa, showed a negative trend during the period 1986-2011. We showed that the combined effects of wind and turbidity with other environmental variables (chlorophyll, salinity and nutrients) consistently explained the variability of observed shifts. Tintinnids were more vulnerable to wind patterns and turbidity while showed a loss of synchrony with primary productivity. Water turbidity produced a dome-like pattern on tintinnids, oligotrichs and A. tonsa, implying that the highest abundance of organisms occurred under moderate values (similar to 50 NTU) of turbidity. In contrast, the response to wind patterns was not generalizable probably owing to species-specific traits. Observed trends denote that wind induced processes in shallow ecosystems with internal sources of suspended sediments, are essential on ciliate dynamics and that such effects can propagate trough the interannual variability of copepods.
|
|
|
Farcy, E., Burgeot, T., Haberkorn, H., Auffret, M., Lagadic, L., Allenou, J. - P., et al. (2013). An integrated environmental approach to investigate biomarker fluctuations in the blue mussel Mytilus edulis L. in the Vilaine estuary, France. Environ Sci Pollut Res, 20(2), 630–650.
Résumé: Estuarine areas represent complex and highly changing environments at the interface between freshwater and marine aquatic ecosystems. Therefore, the aquatic organisms living in estuaries have to face highly variable environmental conditions. The aim of this work was to study the influence of environmental changes from either natural or anthropogenic origins on the physiological responses of Mytilus edulis. Mussels were collected in the Vilaine estuary during early summer because this season represents a critical period of active reproduction in mussels and of increased anthropogenic inputs from agricultural and boating activities into the estuary. The physiological status of the mussel M. edulis was evaluated through measurements of a suite of biomarkers related to: oxidative stress (catalase, malondialdehyde), detoxication (benzopyrene hydroxylase, carboxylesterase), neurotoxicity (acetylcholinesterase), reproductive cycle (vitelline, condition index, maturation stages), immunotoxicity (hemocyte concentration, granulocyte percentage, phagocytosis, reactive oxygen species production, oxidative burst), and general physiological stress (lysosomal stability). A selection of relevant organic contaminant (pesticides, (polycyclic aromatic hydrocarbons, polychlorobiphenyls) was measured as well as environmental parameters (water temperature, salinity, total suspended solids, turbidity, chlorophyll a, pheopigments) and mussel phycotoxin contamination. Two locations differently exposed to the plume of the Vilaine River were compared. Both temporal and inter-site variations of these biomarkers were studied. Our results show that reproduction cycle and environmental parameters such as temperature, organic ontaminants, and algal blooms could strongly influence the biomarker responses. These observations highlight the necessity to conduct integrated environmental approaches in order to better understand the causes of biomarker variations.
|
|
|
Fiandrino, A., Ouisse, V., Dumas, F., Lagarde, F., Pete, R., Malet, N., et al. (2017). Spatial patterns in coastal lagoons related to the hydrodynamics of seawater intrusion. Mar. Pollut. Bull., 119(1), 132–144.
Résumé: Marine intrusion was simulated in a choked and in a restricted coastal lagoon by using a 3D-hydrodynamic model. To study the spatiotemporal progression of seawater intrusion and its mixing efficiency with lagoon waters we define Marine Mixed Volume (V-MM) as a new hydrodynamic indicator. Spatial patterns in both lagoons were described by studying the time series and maps of VMM taking into account the meteorological conditions encountered during a water year. The patterns comprised well-mixed zones (WMZ) and physical barrier zones (PBZ) that act as hydrodynamic boundaries. The choked Bages-Sigean lagoon comprises four sub-basins: a PBZ at the inlet, and two WMZ's separated by another PBZ corresponding to a constriction zone. The volumes of the PBZ were 2.1 and 5.4 millions m(3) with characteristic mixing timescale of 68 and 84 days, respectively. The WMZ were 123 and 433 millions m(3) with characteristics mixing timescale of 70 and 39 days, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
|
|
|
Kantoussan, J., Ecoutin, J. M., Simier, M., Morais, L. T. de, & Laë, R. (2012). Effects of salinity on fish assemblage structure: An evaluation based on taxonomic and functional approaches in the Casamance estuary (Senegal, West Africa). Estuarine, Coastal and Shelf Science, .
Résumé: The utility of taxonomic and functional approaches in assessing the structure of fish communities is tested in the hypersaline estuary of the Casamance river using data from surveys of commercial fisheries conducted between April and July of 2005. Both taxonomic and functional diversity decrease from downstream to upstream regions of the estuary. In terms of species composition, marine-estuarine species (33.3–46.3%, depending on the site) and estuarine species of marine origin (29.3–41.7%) dominate the exploited population in the Casamance estuary. In contrast, the proportion of strictly estuarine species observed upstream is twice that observed downstream. Quantitative analysis based on biomass landed distinguishes two groups in the population: (1) a group of species that is dominant downstream, containing primarily terminal predators and secondary consumers categorised as marine species that are occasional or accessory in estuaries, estuarine marine species, and estuarine species of marine origin; and (2) a group of species characteristic of the upstream region, dominated by a few species (Sarotherodon melanotheron, Tilapia guineensis, and Mugil cephalus) mainly of strictly estuarine and/or herbivorous categories and Elops lacerta, a carnivore fish. The outcomes of the two approaches are similar, and both indicate that the fish community in this estuary is under the influence of strong environmental disturbance. However, the scales at which the specific and functional approaches most reliably reflect environmental conditions are different. The taxonomic approach, i.e., the use of specific biomass is more appropriate at the ecosystem scale and therefore more accessible to local human communities, whereas the functional approach is better suited to regional and sub-regional studies because of the change in species composition from one environment to another.
|
|