Accueil | << 1 2 >> |
![]() |
Borsa, P., Durand, J. D., Shen, K. N., Arlyza, I. S., Solihin, D. D., & Berrebi, P. (2013). Himantura tutul sp nov (Myliobatoidei: Dasyatidae), a new ocellated whipray from the tropical Indo-West Pacific, described from its cytochrome-oxidase I gene sequence. Comptes Rendus Biologies, 336(2), 82–92.
Résumé: It has been previously established that the Leopard Whipray, Himantura leoparda, consists of two genetically isolated, cryptic species, provisionally designated as 'Cluster 1' and 'Cluster 4' (Arlyza et al., Mol. Phylogenet. Evol. 65 (2013) [11). Here, we show that the two cryptic species differ by the spotting patterns on the dorsal surface of adults: Cluster-4 individuals tend to have larger-ocellated spots, which also more often have a continuous contour than Cluster-1 individuals. We show that H. leopard a's holotype has the typical larger-ocellated spot pattern, designating Cluster 4 as the actual H. leoparda. The other species (Cluster 1) is described as Himantura tutul sp. nov. on the basis of the nucleotide sequence of a 655-base pair fragment of its cytochrome-oxidase I gene (GENBANK accession No. JX263335). Nucleotide synapomorphies at this locus clearly distinguish H. tutul sp. nov. from all three other valid species in the H. uarnak species complex, namely H. leoparda, H. uarnak, and H. undulata. H. tutul sp. nov. has a wide distribution in the Indo-West Pacific, from the shores of eastern Africa to the Indo-Malay archipelago. H. leoparda under its new definition has a similarly wide Indo-West Pacific distribution. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
|
Bouyoucos, I. A., Romaine, M., Azoulai, L., Eustache, K., Mourier, J., Rummer, J. L., et al. (2020). Home range of newborn blacktip reef sharks (Carcharhinus melanopterus), as estimated using mark-recapture and acoustic telemetry. Coral Reefs, .
Résumé: Sharks play important functional roles in coral reef ecosystems. Studying reef shark populations' spatial ecology also contributes important data for effective conservation planning. The purpose of this study was to define the home range of neonatal blacktip reef sharks (Carcharhinus melanopterus) around Moorea, French Polynesia, and compare estimates using both mark-recapture surveys and active acoustic telemetry. Mark-recapture surveys produced a minimum convex polygon (MCP) of 0.07 km(2) that was significantly larger than the MCP derived from acoustic telemetry (0.02 km(2)). Acoustic telemetry produced 50 and 95% kernel utilization densities that were smaller (0.02 km(2)) and larger (0.14 km(2)) than home range estimates from mark-recapture surveys, respectively. Home range estimates from this study are the smallest that have been documented for neonatal blacktip reef sharks, possibly owing to the study sites' proximity to deep channels. Mark-recapture and active acoustic telemetry are complementary approaches worthy of consideration where passive telemetry is impractical.
|
Coelho, R., Mejuto, J., Domingo, A., Yokawa, K., Liu, K. - M., Cortes, E., et al. (2018). Distribution patterns and population structure of the blue shark (Prionace glauca) in the Atlantic and Indian Oceans. Fish. Fish., 19(1), 90–106.
Résumé: The blue shark (Prionace glauca) is the most frequently captured shark in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. As part of cooperative scientific efforts for fisheries and biological data collection, information from fishery observers, scientific projects and surveys, and from recreational fisheries from several nations in the Atlantic and Indian Oceans was compiled. Data sets included information on location, size and sex, in a total of 478,220 blue shark records collected between 1966 and 2014. Sizes ranged from 36 to 394cm fork length. Considerable variability was observed in the size distribution by region and season in both oceans. Larger blue sharks tend to occur in equatorial and tropical regions, and smaller specimens in higher latitudes in temperate waters. Differences in sex ratios were also detected spatially and seasonally. Nursery areas in the Atlantic seem to occur in the temperate south-east off South Africa and Namibia, in the south-west off southern Brazil and Uruguay, and in the north-east off the Iberian Peninsula and the Azores. Parturition may occur in the tropical north-east off West Africa. In the Indian Ocean, nursery areas also seem to occur in temperate waters, especially in the south-west Indian Ocean off South Africa, and in the south-east off south-western Australia. The distributional patterns presented in this study provide a better understanding of how blue sharks segregate by size and sex, spatially and temporally, and improve the scientific advice to help adopt more informed and efficient management and conservation measures for this cosmopolitan species.
|
Follesa, M. C., Marongiu, M. F., Zupa, W., Bellodi, A., Cau, A., Cannas, R., et al. (2019). Spatial variability of Chondrichthyes in the northern Mediterranean. Sci. Mar., 83, 81–100.
Résumé: Thanks to the availability of the MEDITS survey data, a standardized picture of the occurrence and abundance of demersal Chondrichthyes in the northern Mediterranean has been obtained. During the spring-summer period between 2012 and 2015, 41 Chondrichthyes, including 18 sharks (5 orders and 11 families). 22 batoids (3 orders and 4 families) and 1 chimaera, were detected from several geographical sub-areas (GSAs) established by the General Fisheries Commission for the Mediterranean. Batoids had a preferential distribution on the continental shelf (10-200 m depth). while shark species were more frequent on the slope (200-800 m depth). Only three species, the Carcharhiniformes Galeus melastomus and Scyliorhinus canicida and the Torpediniformes Torpedo matmorata were caught in all GSAs studied. On the continental shelf, the Rajidae family was the most abundant, being represented in primis by Raja clavaia and then by R. miraleius, R. polystigma and R. asterias. The slope was characterized by the prevalence of G. melastomus in all GSAs, followed by S. canictda, E. spinax and Squalus blainville. Areas under higher fishing pressure, such as the Adriatic Sea and the Spanish coast (with the exception of the Balearic Islands), show a low abundance of chondrichthyans, but other areas with a high level of fishing pressure, such as southwestern Sicily, show a high abundance, suggesting that other environmental drivers work together with fishing pressure to shape their distribution. Results of generalized additive models highlighted that depth is one of the most important environmental drivers influencing the distribution of both batoid and shark species, although temperature also showed a significant influence on their distribution. The approach explored in this work shows the possibility of producing maps modelling the distribution of demersal chondrichthyans in the Mediterranean that are useful for the management and conservation of these species at a regional scale. However, because of the vulnerability of these species to fishing exploitation, fishing pressure should be further incorporated in these models in addition to these environmental drivers.
|
Matich, P., Kiszka, J. J., Heithaus, M. R., Le Bourg, B., & Mourier, J. (2019). Inter-individual differences in ontogenetic trophic shifts among three marine predators. Oecologia, 189(3), 621–636.
Résumé: Ontogenetic niche shifts are widespread. However, individual differences in size at birth, morphology, sex, and personalities can cause variability in behavior. As such, inherent inter-individual differences within populations may lead to context-dependent changes in behavior with animal body size, which is of concern for understanding population dynamics and optimizing ecological monitoring. Using stable carbon and nitrogen isotope values from concurrently sampled tissues, we quantified the direction and magnitude of intraspecific variation in trophic shifts among three shark species, and how these changed with body size: spurdogs (Squalus spp.) in deep-sea habitats off La Reunion, bull sharks (Carcharhinus leucas) in estuarine habitats of the Florida Everglades, and blacktip reef sharks (Carcharhinus melanopterus) in coral reef ecosystems of Moorea, French Polynesia. Intraspecific variation in trophic shifts was limited among spurdogs, and decreased with body size, while bull sharks exhibited greater individual differences in trophic shifts, but also decreased in variability through ontogeny. In contrast, blacktip reef sharks exhibited increased intraspecific variation in trophic interactions with body size. Variability in trophic interactions and ontogenetic shifts are known to be associated with changes in energetic requirements, but can vary with ecological context. Our results suggest that environmental stability may affect variability within populations, and ecosystems with greater spatial and/or temporal variability in environmental conditions, and those with more diverse food webs may facilitate greater individual differences in trophic interactions, and thus ontogenetic trophic shifts. In light of concerns over environmental disturbance, elucidating the contexts that promote or dampen phenotypic variability is invaluable for predicting population- and community-level responses to environmental changes.
|