Accueil | << 1 2 3 4 >> |
![]() |
Arneth, A., Shin, Y. - J., Leadley, P., Rondinini, C., Bukvareva, E., Kolb, M., et al. (2020). Post-2020 biodiversity targets need to embrace climate change. Pnas, 117(49), 30882–30891.
Résumé: Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity’s post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post-2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity’s capacity to contribute to climate change mitigation and adaptation.
Mots-Clés: biodiversity; ecosystem services; policy; sustainability
|
Aubin, J., Callier, M., Rey-Valette, H., Mathe, S., Wilfart, A., Legendre, M., et al. (2019). Implementing ecological intensification in fish farming: definition and principles from contrasting experiences. Rev. Aquac., 11(1), 149–167.
Résumé: Ecological intensification is a new concept in agriculture that addresses the double challenge of maintaining a level of production sufficient to support needs of human populations and respecting the environment in order to conserve the natural world and human quality of life. This article adapts this concept to fish farming using agroecological principles and the ecosystem services framework. The method was developed from the study of published literature and applications at four study sites chosen for their differences in production intensity: polyculture ponds in France, integrated pig and pond polyculture in Brazil, the culture of striped catfish in Indonesia and a recirculating salmon aquaculture system in France. The study of stakeholders' perceptions of ecosystem services combined with environmental assessment through Life Cycle Assessment and Emergy accounting allowed development of an assessment tool that was used as a basis for co-building evolution scenarios. From this experience, ecological intensification of aquaculture was defined as the use of ecological processes and functions to increase productivity, strengthen ecosystem services and decrease disservices. It is based on aquaecosystem and biodiversity management and the use of local and traditional knowledge. Expected consequences for farming systems consist of greater autonomy, efficiency and better integration into their surrounding territories. Ecological intensification requires territorial governance and helps improve it from a sustainable development perspective.
|
Beckensteiner, J., Kaplan, D. M., & Scheld, A. M. (2020). Barriers to Eastern Oyster Aquaculture Expansion in Virginia. Front. Mar. Sci., 7, 53.
Résumé: The eastern oyster once provided major societal and ecosystem benefits, but these benefits have been threatened in recent decades by large declines in oyster harvests. In many areas, recovery of oyster aquaculture faces significant societal opposition and spatial constraints limiting its ability to meet expectations regarding future food needs and provision of ecosystem services. In Virginia, oyster aquaculture has begun to expand, concurrent with an increase in subaqueous leased areas (over 130,000 acres of grounds are currently leased). Though private leases must in theory be used for oyster production, in practice, they can be held for other reasons, such as speculation or intentional exclusion of others. These factors have led to large variation over time and space in the use of leases in lower Chesapeake Bay; and privately leased grounds are now thought to be underutilized for oyster production. This research examined potential barriers to expansion of oyster aquaculture in Virginia. We first evaluated if a lack of space was limiting industry expansion and quantified temporal and spatial trends in the use and productivity of leases. Then, differences in used and non-used leases were investigated in relation to variables thought to be related to “not in my backyard” attitudes, congestion, speculation, local economic and environmental conditions. Finally, the performance of the Virginia leasing system was compared with those in other states along the U.S. East and Gulf Coasts. We found limited evidence for spatial constraints on aquaculture leasing, but strong evidence for social and regulatory inefficiencies. Although rates of lease use increased from 2006 to 2016, only 33% of leases were ever used for oyster production and about 63% of leaseholders reported no commercial harvests. Non-used leases tended to be smaller, and were found in more populated, high-income regions, consistent with both speculative and exclusionary uses. Virginia had the second lowest level of total production of cultured oysters per leased acre among the states on the East and Gulf Coasts of the United States. These results indicate that there is room for oyster aquaculture expansion in Virginia if societal, regulatory, and economic barriers can be reduced or if existing leased areas are used more efficiently.
|
Cormier-Salem, M. - C., Van Trai, N., Burgos, A., Durand, J. - D., Bettarel, Y., Klein, J., et al. (2017). The mangrove's contribution to people: Interdisciplinary pilot study of the Can Gio Mangrove Biosphere Reserve in Viet Nam. Comptes Rendus Geoscience, 349(6), 341–350. |
De Wit, R., Rey-Valette, H., Balavoine, J., Ouisse, V., & Lifran, R. (2017). Restoration ecology of coastal lagoons: new methods for the prediction of ecological trajectories and economic valuation. Aquatic Conserv: Mar. Freshw. Ecosyst., 27(1), 137–157.
Résumé: * Conservation of the seven lagoons of the Palavas complex (southern France) has been severely impaired by nutrient over-enrichment during at least four decades. The effluents of the Montpellier wastewater treatment plant (WWTP) represented the main nutrient input. To improve the water quality of these lagoons, this WWTP was renovated and upgraded and, since the end of 2005, its effluents have been discharged 11 km offshore into the Mediterranean (total investment €150 M). * Possibilities of ecosystem restoration as part of a conservation programme were explored by a focus group of experts. Their tasks were: (i) to evaluate the impact of the reduction of the nutrient input; (ii) if necessary, to design additional measures for an active restoration programme; and (iii) to predict ecosystem trajectories for the different cases. Extension of Magnoliophyta meadows can be taken as a proxy for ecosystem restoration as they favour the increase of several fish (seahorse) and bird (ducks, swans, herons) species, albeit they represent a trade-off for greater flamingos. Additional measures for active ecosystem restoration were only recommended for the most impaired lagoon Méjean, while the least impaired lagoon Ingril is already on a trajectory of spontaneous recovery. * A multiple contingent valuation considering four different management options for the Méjean lagoon was used in a pilot study based on face-to-face interviews with 159 respondents. Three levels of ecosystem restoration were expressed in terms of recovery of Magnoliophyta meadows, including their impact on emblematic fish and avifauna. These were combined with different options for access (status quo, increasing access, increasing access with measures to reduce disturbance). The results show a willingness of local populations to pay per year about €25 for the highest level of ecological restoration, while they were only willing to allocate about €5 for additional footpaths and hides.
Copyright © 2015 John Wiley & Sons, Ltd. |