|
Ben Gharbia, H., Laabir, M., Ben Mhamed, A., Gueroun, S. K. M., Yahia, M. N. D., Nouri, H., et al. (2019). Occurrence of epibenthic dinoflagellates in relation to biotic substrates and to environmental factors in Southern Mediterranean (Bizerte Bay and Lagoon, Tunisia): An emphasis on the harmful Ostreopsis spp., Prorocentrum lima and Coolia monotis. Harmful Algae, 90, 101704.
Résumé: Harmful events associated with epibenthic dinoflagellates, have been reported more frequently over the last decades. Occurrence of potentially toxic benthic dinoflagellates, on the leaves of two magnoliophytes (Cymodocea nodosa and Zostera noltei) and thalli of the macroalgae (Ulva rigida), was monitored over one year (From May 2015 to April 2016) in the Bizerte Bay and Lagoon (North of Tunisia, Southern Mediterranean Sea). The investigated lagoon is known to be highly anthropized. This is the first report on the seasonal distribution of epibenthic dinoflagellates hosted by natural substrates, from two contrasted, adjacent coastal Mediterranean ecosystems. The environmental factors promoting the development of the harmful epibenthic dinoflagellates Ostreopsis spp., Prorocentrum lima and Coolia monotis were investigated. The highest cell densities were reached by Ostreopsis spp. (1.9 x 10(3) cells g(-1) FW, in October 2015), P. lima (1.6 x 10(3) cells g(-1) FW, in June 2015) and C. monotis (1.1 x 10(3) cells g(-1) FW, in May 2015). C. nodosa and Z. noltei were the most favorable host macrophytes for C. monotis (in station L2) and Ostreopsis spp. (in station L3), respectively. Positive correlations were recorded between Ostreopsis spp. and temperature. Densities of the epibenthic dinoflagellates varied according to the collection site, and a great disparity was observed between the Bay and the Lagoon. Maximum concentrations were recorded on C. nodosa leaves from the Bizerte Bay, while low epiphytic cell abundances were associated with macrophytes sampled from the Bizerte Lagoon. The observed differences in dinoflagellate abundances between the two ecosystems (Bay-Lagoon) seemed not related to the nutrients, but rather to the poor environmental conditions in the lagoon.
|
|
|
Bonnin, L., Robbins, W. D., Boussarie, G., Kiszka, J. J., Dagorn, L., Mouillot, D., et al. (2019). Repeated long-range migrations of adult males in a common Indo-Pacific reef shark. Coral Reefs, .
Résumé: The grey reef shark, Carcharhinus amblyrhynchos, is one of the most abundant coral reef sharks throughout the Indo-Pacific. However, this species has been critically impacted across its range, with well-documented population declines of > 90% attributed to human activities. A key knowledge gap in the successful implementation of grey reef shark conservation plans is the understanding of large-scale movement patterns, along with the associated biological and ecological drivers. To address this shortfall, we acoustically monitored 147 adult and juvenile grey reef sharks of all sexes for more than 2 yr across the New Caledonian archipelago, West Pacific. Here, we document multiple adult males undertaking return journeys of up to nearly 700 km in consecutive years. This constitutes the first evidence of repeated long-range migrations for this species. Although only a limited number of adult males were definitively tracked undertaking migrations, similar timing in changes in the detection patterns of a further 13 animals, mostly adult males, suggests this behavior may be more common than previously thought. The paucity of evidence for juvenile migrations and timing of adult movements suggest that mating is the motivation behind these migrations. Our results have important implications for management, given the potential of mature individuals to recurrently travel outside managed or protected areas. Future management of this species clearly needs to consider the importance of large-scale migratory behaviors when developing management plans.
|
|
|
Borsa, P., Durand, J. D., Shen, K. N., Arlyza, I. S., Solihin, D. D., & Berrebi, P. (2013). Himantura tutul sp nov (Myliobatoidei: Dasyatidae), a new ocellated whipray from the tropical Indo-West Pacific, described from its cytochrome-oxidase I gene sequence. Comptes Rendus Biologies, 336(2), 82–92.
Résumé: It has been previously established that the Leopard Whipray, Himantura leoparda, consists of two genetically isolated, cryptic species, provisionally designated as 'Cluster 1' and 'Cluster 4' (Arlyza et al., Mol. Phylogenet. Evol. 65 (2013) [11). Here, we show that the two cryptic species differ by the spotting patterns on the dorsal surface of adults: Cluster-4 individuals tend to have larger-ocellated spots, which also more often have a continuous contour than Cluster-1 individuals. We show that H. leopard a's holotype has the typical larger-ocellated spot pattern, designating Cluster 4 as the actual H. leoparda. The other species (Cluster 1) is described as Himantura tutul sp. nov. on the basis of the nucleotide sequence of a 655-base pair fragment of its cytochrome-oxidase I gene (GENBANK accession No. JX263335). Nucleotide synapomorphies at this locus clearly distinguish H. tutul sp. nov. from all three other valid species in the H. uarnak species complex, namely H. leoparda, H. uarnak, and H. undulata. H. tutul sp. nov. has a wide distribution in the Indo-West Pacific, from the shores of eastern Africa to the Indo-Malay archipelago. H. leoparda under its new definition has a similarly wide Indo-West Pacific distribution. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Mots-Clés: Himantura leoparda, New species, Molecular taxonomy, COI, Cytochrome b; myliobatiformes dasyatidae, conservation, fisheries, indonesia, sharks,; rays, elasmobranchs, management, taxonomy, barcode
|
|
|
Bourgeois, S., Hochard, S., & Pringault, O. (2010). Subtidal microphytobenthos: effects of inorganic and organic compound supplies on migration, production, and respiration in a tropical coastal environment. Aquat. Microb. Ecol., 61(1), 13–29.
Résumé: Microphytobenthos (MPB) is an important primary producer in coastal ecosystems. In oligotrophic environments, its activity may be controlled by the availability of organic or inorganic compounds but also by its migration behavior. The objective of this study was to determine, in MPB-colonized subtidal sediments, the consequences of short-term enrichments (< 24 h) of organic (alanine, glutamate, and glucose) and inorganic (ammonium, phosphate) compounds on MPB vertical migration and metabolisms, net production (NP), areal gross production (AGP), and community respiration (R). Two contrasting stations located in the southwest lagoon of New Caledonia were investigated: 1 under strong anthropogenic influence and 1 under more oceanic influence. Both stations were dominated by epipelic diatoms. Differences in net primary production were explained by diurnal variation of MPB biomass at the sediment surface, showing the importance of MPB migration in the functioning of these subtidal environments. However, a stimulation or inhibition of MPB migration did not necessarily impact the net primary production of the system; this strongly depends upon the interactions between the autotrophic and heterotrophic compartments, the latter being controlled by the environmental conditions. For the station under low anthropogenic influence, AGP and R were both significantly stimulated by alanine, glucose, and ammonium, and significantly inhibited by phosphate. The similar responses of AGP and R to enrichments suggest that autotrophs and heterotrophs were tightly coupled. Conversely, in the station under strong anthropogenic influence, AGP and R responded differently. Addition of ammonium inhibited AGP without having an impact on R, whereas addition of phosphate inhibited R whilst having no measurable effect on AGP. In this station, the coupling between autotrophs and heterotrophs was weakened, suggesting that the carbon demand of the heterotrophic compartment is probably sustained by the supplies of allochthonous organic matter rather than by exudates from the autotrophic compartment.
|
|
|
Capietto, A., Escalle, L., Chavance, P., Dubroca, L., Delgado de Molina, A., Murua, H., et al. (2014). Mortality of marine megafauna induced by fisheries: Insights from the whale shark, the world’s largest fish. Biological Conservation, 174, 147–151.
Résumé: The expansion of human activities is endangering megafauna in both terrestrial and marine ecosystems. While large marine vertebrates are often vulnerable and emblematic species, many are considered to be declining, primarily due to fisheries activities. In the open ocean, certain fisheries improve their efficiency of detecting tuna schools by locating and fishing close to some macro-organisms, such as whale sharks or marine mammals. However, collecting accurate data on the accidental capture and mortality of these organisms is a complex process. We analyzed a large database of logbooks from 65 industrial vessels with and without scientific observers on board (487,272 and 16,096 fishing sets since 1980 and 1995 respectively) in both the Atlantic and Indian Oceans. Distribution maps of Sightings Per Unit of Effort highlights major hotspots of interactions between the fishery and whale sharks in the coastal area from Gabon to Angola in the Atlantic from April to September, and in the Mozambique Channel in the Indian Ocean between April and May. The incidence of apparent whale shark mortality due to fishery interaction is extremely low (two of the 145 whale sharks encircled by the net died, i.e. 1.38%). However, these two hotspots presented a relatively high rate of incidental whale shark capture. Thus, we underline the importance of estimating long-term post-release mortality rates by tracking individuals and/or by photographic identification to define precise conservation management measures.
|
|