Annasawmy, P., Cherel, Y., Romanov, E., Le Loc'h, F., Menard, F., Ternon, J. - F., et al. (2020). Stable isotope patterns of mesopelagic communities over two shallow seamounts of the south-western Indian Ocean. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 176, 104804.
Résumé: The stable carbon (delta C-13) and nitrogen (delta N-15) isotope values of soft tissues of micronekton (crustaceans, squid, mesopelagic fish) and zooplankton were measured from organisms collected on the RV Antea at two seamounts located in the south-western Indian Ocean: La Perouse (summit depth similar to 60 m) and “MAD-Ridge” (thus named in this study; summit depth similar to 240 m). Surface particulate organic matter (POM-Surf) showed higher delta C-13 at the more productive MAD-Ridge than at the oligotrophic La Perouse seamount. Particulate organic matter and zooplankton were depleted in N-15 at La Pemuse pinnacle compared with MAD-Ridge. Gelatinous organisms and crustaceans occupied the lowest and intermediate tmphic levels (TL similar to 2 and 3 respectively) at both seamounts. Mesopelagic fish and smaller-sized squid sampled at both seamounts occupied TL similar to 3 to 4, whereas the large nektonic squid, Ommastrephes bartramii, collected at MAD-Ridge only, exhibited a TL of similar to 5. The delta N-15 values of common open-water mesopelagic taxa were strongly influenced by specimen size and feeding habits at both seamounts, with an increase in delta N-15 values with increasing size. Carnivorous fish species sampled exclusively over the seamounts' flanks and summits exhibited TL values of similar to 4, irrespective of their wide size ranges. The work could not demonstrate any differences in delta C-13 values of mesopelagic fish between the seamounts and the surrounding oceanic areas. The study segregated clusters of mesopelagic organisms according to their delta C-13 and delta N-15 values, with variations in stable isotope values reflecting a complex range of processes possibly linked to productivity as well as biological and ecological traits of the species (size and feeding mode).
|
Boudour-Boucheker, N., Boulo, V., Charmantier-Daures, M., Anger, K., Charmantier, G., & Lorin-Nebel, C. (2016). Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 195, 39–45.
Résumé: In this comparative study, osmoregulatory mechanisms were analyzed in two closely related species of palaemonid shrimp from Brazil, Macrobrachium pantanalense and Macrobrachium amazonicum. A previous investigation showed that all postembryonic stages of M. pantanalense from inland waters of the Pantanal are able to hyper-osmoregulate in fresh water, while this species was not able to hypo-osmoregulate at high salinities. In M. amazonicum originating from the Amazon estuary, in contrast, all stages are able to hypo-osmoregulate, but only first-stage larvae, late juveniles and adults are able to hyper-osmoregulate in fresh water. The underlying molecular mechanisms of these physiological differences have not been known. We therefore investigated the expression patterns of three ion transporters (NKA α-subunit, VHA B-subunit and NHE3) following differential salinity acclimation in different ontogenetic stages (stage-V larvae, juveniles) of both species. Larval NKAα expression was at both salinities significantly higher in M. pantanalense than in M. amazonicum, whereas no difference was noted in juveniles. VHA was also more expressed in larvae of M. pantanalense than in those of M. amazonicum. When NHE3 expression is compared between the larvae of the two species, further salinity-related differences were observed, with generally higher expression in the inland species. Overall, a high expression of ion pumps in M. pantanalense suggests an evolutionary key role of these transporters in freshwater invasion.
|
Boudour-Boucheker, N., Boulo, V., Lorin-Nebel, C., Elguero, C., Grousset, E., Anger, K., et al. (2013). Adaptation to freshwater in the palaemonid shrimp Macrobrachium amazonicum: comparative ontogeny of osmoregulatory organs. Cell Tissue Res, 353(1), 87–98.
|
Fernandez-Arcaya, U., Bitetto, I., Esteban, A., Teresa Farriols, M., Garcia-Ruiz, C., Gil de Sola, L., et al. (2019). Large-scale distribution of a deep-sea megafauna community along Mediterranean trawlable grounds. Sci. Mar., 83, 175–187.
Résumé: The large-scale distribution pattern of megafauna communities along the Mediterranean middle slope was explored. The study was conducted between 500 and 800 m depth where deep-water fishery occurs. Although community studies carried out deeper than 500 m are partly available for some geographic areas, few large-scale comparative studies have been carried out. Within the framework of the MEDITS survey programme, we compared the megafauna community structure in ten geographical sub-areas (GSAs) along the Mediterranean coasts. Additionally, the spatial distribution of fishing was analysed using vessel monitoring by satellite information. Overall, the community showed a significant difference between sub-areas, with a decreasing eastward pattern in abundance and biomass. Longitude was the main factor explaining variation among sub-areas (by generalized additive models). However, we found a region which did not follow the general pattern. GSA 6 (northern Spain) showed significantly lower abundance and a different composition structure to the adjacent areas. The decrease in community descriptors (i.e. abundance and biomass) in this area is probably a symptom of population changes induced by intense fishery exploitation. Overall, a combination of environmental variables and human-induced impacts appears to influence the bentho-pelagic communities along the slope areas of the Mediterranean.
|