|   | 
Détails
   web
Enregistrements
Auteur Freon, P.; Avadi, A.; Chavez, R.A.V.; Ahon, F.I.
Titre Life cycle assessment of the Peruvian industrial anchoveta fleet : boundary setting in life cycle inventory analyses of complex and plural means of production Type Article scientifique
Année 2014 Publication Revue Abrégée International Journal of Life Cycle Assessment
Volume 19 Numéro 5 Pages 1068-1086
Mots-Clés Attributional LCA; Complex production system; Environmental impacts; Fishing vessel; Fuel use; Life cycle inventory
Résumé This work has two major objectives: (1) to perform an attributional life cycle assessment (LCA) of a complex mean of production, the main Peruvian fishery targeting anchoveta (anchovy) and (2) to assess common assumptions regarding the exclusion of items from the life cycle inventory (LCI). Data were compiled for 136 vessels of the 661 units in the fleet. The functional unit was 1 t of fresh fish delivered by a steel vessel. Our approach consisted of four steps: (1) a stratified sampling scheme based on a typology of the fleet, (2) a large and very detailed inventory on small representative samples with very limited exclusion based on conventional LCI approaches, (3) an impact assessment on this detailed LCI, followed by a boundary-refining process consisting of retention of items that contributed to the first 95 % of total impacts and (4) increasing the initial sample with a limited number of items, according to the results of (3). The life cycle impact assessment (LCIA) method mostly used was ReCiPe v1.07 associated to the ecoinvent database. Some items that are usually ignored in an LCI's means of production have a significant impact. The use phase is the most important in terms of impacts (66 %), and within that phase, fuel consumption is the leading inventory item contributing to impacts (99 %). Provision of metals (with special attention to electric wiring which is often overlooked) during construction and maintenance, and of nylon for fishing nets, follows. The anchoveta fishery is shown to display the lowest fuel use intensity worldwide. Boundary setting is crucial to avoid underestimation of environmental impacts of complex means of production. The construction, maintenance and EOL stages of the life cycle of fishing vessels have here a substantial environmental impact. Recommendations can be made to decrease the environmental impact of the fleet.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue (up) Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0948-3349 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1148
Lien permanent pour cet enregistrement
 

 
Auteur Freon, P.; Avadi, A.; Soto, W.M.; Negron, R.
Titre Environmentally extended comparison table of large-versus small- and medium-scale fisheries : the case of the Peruvian anchoveta fleet Type Article scientifique
Année 2014 Publication Revue Abrégée Canadian Journal of Fisheries and Aquatic Sciences
Volume 71 Numéro 10 Pages 1459-1474
Mots-Clés
Résumé Literature on small-scale fisheries usually depicts them as preferable over large-scale-industrial fisheries regarding societal benefits (jobs, jobs per investment) and relative fuel efficiency (e. g., Thomson 1980). We propose an environmentally extended Thomson table for comparing the Peruvian anchoveta (Engraulis ringens) fleets of purse seiners, backed up by methodological information and augmented with life cycle assessment (LCA)-based environmental performance information, as a more comprehensive device for comparing fleets competing for the same resource pool. Findings from LCA and a previous study on the anchoveta steel fleet together allowed characterizing the whole Peruvian anchoveta fishery. These results, along with socioeconomic indicators, are used to build an environmentally extended Thomson table of the fleet's main segments: the steel industrial, the wooden industrial, and the wooden small-and medium-scale (SMS) fleets. In contrast with the world figure, the Peruvian SMS fleets show a fuel performance nearly two times worse than the industrial fleets, due to economies of scale of the latter (although the small-scale segment itself (<10 m(3)) performs similarly to the industrial steel fleet). Furthermore, the absolute number of jobs provided by the industrial fisheries is much larger in Peru than those provided by the SMS fisheries. This is due to the relatively larger development of the industrial fishery, but as in previous studies, the SMS fleets generate more employment per tonne landed than the industrial fleet, as well as more food fish and less discards at sea.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue (up) Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1149
Lien permanent pour cet enregistrement
 

 
Auteur Heymans, J.J.; Coll, M.; Libralato, S.; Morissette, L.; Christensen, V.
Titre Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach Type Article scientifique
Année 2014 Publication Revue Abrégée PLoS ONE
Volume 9 Numéro 4 Pages
Mots-Clés
Résumé Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue (up) Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 382
Lien permanent pour cet enregistrement
 

 
Auteur Freon, P.; Sueiro, J.C.; Iriarte, F.; Evar, O.F.M.; Landa, Y.; Mittaine, J.F.; Bouchon, M.
Titre Harvesting for food versus feed : a review of Peruvian fisheries in a global context Type Article scientifique
Année 2014 Publication Revue Abrégée Reviews in Fish Biology and Fisheries
Volume 24 Numéro 1 Pages 381-398
Mots-Clés Feed fish; Fisheries management; Food security; Politico-socio-economic processes; Seafood; Sustainable development
Résumé Peru is the top exporter of fishmeal and fish oil (FMFO) worldwide and is responsible for half and a third of global production, respectively. Landings of “anchoveta” (Engraulis ringens) are used nearly exclusively for FMFO production, despite a proactive national food policy aimed at favoring the direct human consumption of this inexpensive species. It may be surprising that in a country where malnutrition and caloric deficit constitute major issues, a low-priced and highly nutritious fish such as anchovy does not have stronger domestic demand as a food fish. Here, we review and assess eight potential politico-socio-economic processes that can explain this situation. The main explanation are dietary habits, the preference for broiler and the higher profit from anchovy sold as feed fish compared to its use as a food fish due to historically high FMFO prices, boosted by an increasing demand for aquaculture in a context of finite forage and trash fish resources. In addition, the recent introduction of an individual quota system has shifted bargaining power from processors to fishers, thereby increasing competition for the raw material. This competition results in an increase in anchovy prices offered by the feed fish industry due to its onshore processing overcapacity, which is detrimental to the food fish industry. In the end, although the dominant use of anchovy for fish feed is largely explained by integrating these market mechanisms and other minor ones, this use raises other issues, such as rent redistribution through public policies, employment, equitability and utility (low social costs), and resource management (threats to ecosystems or global change). Different policy scenarios are proposed in relation to these issues.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue (up) Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0960-3166 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1150
Lien permanent pour cet enregistrement
 

 
Auteur Levin, N.; Coll, M.; Fraschetti, S.; Gal, G.; Giakoumi, S.; Gke, C.; Heymans, J.J.; Katsanevakis, S.; Mazor, T.; ztrk, B.; Rilov, G.; Gajewski, J.; Steenbeek, J.; Kark, S.
Titre REVIEW Biodiversity data requirements for systematic conservation planning in the Mediterranean Sea Type Article scientifique
Année 2014 Publication Revue Abrégée Mar Ecol Prog Ser
Volume 508 Numéro Pages 261-281
Mots-Clés
Résumé ABSTRACT: The Mediterranean Sea’s biodiversity and ecosystems face many threats due to anthropogenic pressures. Some of these include human population growth, coastal urbanization, accelerated human activities, and climate change. To enhance the formation of a science-based system of marine protected areas in the Mediterranean Sea, data on the spatial distribution of ecological features (abiotic variables, species, communities, habitats, and ecosystems) is required to inform conservation scientists and planners. However, the spatial data required is often lacking. In this review, we aimed to address the status of our knowledge for 3 major types of spatial information: bathymetry, classification of marine habitats, and species distributions. To exemplify the data gaps and approaches to bridge them, we examined case studies that systematically prioritize conservation in the Mediterranean Sea. We found that at present the data required for conservation planning is generally more readily available and of better quality for the European countries located in the Western Mediterranean Sea. Additionally, the Mediterranean Sea is lagging behind other marine regions where rigorous criteria for conservation planning has been applied in the past 20 yr. Therefore, we call upon scientists, governments, and international governmental and non-governmental organizations to harmonize current approaches in marine mapping and to develop a framework that is applicable throughout the Mediterranean region. Such coordination between stakeholders is urgently needed before more countries undertake further extensive habitat mapping, so that future conservation planning can use integrated spatial datasets.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue (up) Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 383
Lien permanent pour cet enregistrement