|   | 
Détails
   web
Enregistrements
Auteur Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601
Lien permanent pour cet enregistrement
 

 
Auteur Wang, T.; Lefevre, S.; Iversen, N.K.; Findorf, I.; Buchanan, R.; McKenzie, D.J.
Titre Anaemia only causes a small reduction in the upper critical temperature of sea bass: is oxygen delivery the limiting factor for tolerance of acute warming in fishes? Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 24 Pages 4275-4278
Mots-Clés aerobic scope; cardiac-performance; Cardiovascular; climate-change; dicentrarchus-labrax; ecology; exp. biol. 216; fish; Haematocrit; metabolism; Oxygen transport; phenylhydrazine-induced anemia; thermal tolerance; trout
Résumé To address how the capacity for oxygen transport influences tolerance of acute warming in fishes, we investigated whether a reduction in haematocrit, by means of intra-peritoneal injection of the haemolytic agent phenylhydrazine, lowered the upper critical temperature of sea bass. A reduction in haematocrit from 42 +/- 2% to 20 +/- 3% (mean +/- s.e.m.) caused a significant but minor reduction in upper critical temperature, from 35.8 +/- 0.1 to 35.1 +/- 0.2 degrees C, with no correlation between individual values for haematocrit and upper thermal limit. Anaemia did not influence the rise in oxygen uptake between 25 and 33 degrees C, because the anaemic fish were able to compensate for reduced blood oxygen carrying capacity with a significant increase in cardiac output. Therefore, in sea bass the upper critical temperature, at which they lost equilibrium, was not determined by an inability of the cardio-respiratory system to meet the thermal acceleration of metabolic demands.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0022-0949 ISBN Médium
Région Expédition Conférence
Notes <p>ISI Document Delivery No.: AW7BT<br/>Times Cited: 1<br/>Cited Reference Count: 44<br/>Wang, Tobias Lefevre, Sjannie Iversen, Nina K. Findorf, Inge Buchanan, Rasmus McKenzie, David J.<br/>Centre National de la Recherche Scientifique (CNRS); Danish Research Council; Region Languedoc-Roussillon (RLR); Ambassade de France in Copenhagen; Universite Montpellier 2<br/>This research was supported by the Centre National de la Recherche Scientifique (CNRS), the Danish Research Council, The Ambassade de France in Copenhagen and Universite Montpellier 2. T.W. was supported by a fellowship from Region Languedoc-Roussillon (RLR) as a visiting professor at Universite Montpellier 2. I.F. and N.K.I. were supported by a student grant from The Ambassade de France in Copenhagen.<br/>Company of biologists ltd<br/>Cambridge</p> Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1181
Lien permanent pour cet enregistrement
 

 
Auteur Sequeira, A.M.M.; Mellin, C.; Floch, L.; Williams, P.G.; Bradshaw, C.J.A.
Titre Inter-ocean asynchrony in whale shark occurrence patterns Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Marine Biology and Ecology
Volume 450 Numéro Pages 21-29
Mots-Clés <!–; –><keyword; Handled; id=; Not; Tag
Résumé Abstract The whale shark (Rhincodon typus, Smith, 1828) is a migratory species (classed as Vulnerable by the IUCN) with genetic and circumstantial evidence for inter-ocean connectivity. Given this migratory behaviour, population-wide occurrence trends can only be contextualized by examining the synchrony in occurrence patterns among locations where they occur. We present a two-step modelling approach of whale shark spatial and temporal probability of occurrence in the Atlantic and Pacific Oceans using generalized linear mixed-effects models. To test the hypothesis that the probability of whale shark occurrence is asynchronous across oceans, as expected if inter-ocean migration occurs, we used long-term datasets of whale shark sightings derived from tuna purse-seine logbooks covering most of the central-east Atlantic (1980–2010) and western Pacific (2000–2010). We predicted seasonal habitat suitability to produce maps in each area, and then evaluated the relative effect of time (year) on the probability of occurrence to test whether it changed over the study period. We also applied fast Fourier transforms to determine if any periodicity was apparent in whale shark occurrences in each ocean. After partialling out the effects of seasonal patterns in spatial distribution and sampling effort, we found no evidence for a temporal trend in whale shark occurrence in the Atlantic, but there was a weak trend of increasing probability of occurrence in the Pacific. The highest-ranked model for the latter included a spatial predictor of occurrence along with fishing effort, a linear term for time, and a random temporal effect (year), explaining 15% of deviance in whale shark probability of occurrence. Fast Fourier transforms revealed a prominent 15.5-year cycle in the Atlantic. The increase in the probability of occurrence in the Pacific is concurrent with a decrease previously detected in the Indian Ocean. Cyclic patterns driven by migratory behaviour would better explain temporal trends in whale shark occurrence at the oceanic scale. However, despite cycles partially explaining observations of fewer sharks in some years, overall reported sighting rate has been decreasing. As a result, we suggest that the current {IUCN} status of the species should be re-assessed, but more data are needed to examine the flow of individuals across oceans and to identify possible reasons for asynchronous occurrences.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0022-0981 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 314
Lien permanent pour cet enregistrement
 

 
Auteur Putman, N.F.; Abreu-Grobois, F.A.; Broderick, A.C.; Ciofi, C.; Formia, A.; Godley, B.J.; Stroud, S.; Pelembe, T.; Verley, P.; Williams, N.
Titre Numerical dispersal simulations and genetics help explain the origin of hawksbill sea turtles in Ascension Island Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Marine Biology and Ecology
Volume 450 Numéro Special Issue Pages 98-108
Mots-Clés dispersal; mtDNA; ocean circulation model; Sea turtle
Résumé Long-distance dispersal and ontogenetic shifts in habitat use are characteristic of numerous marine species and have important ecological, evolutionary, and management implications. These processes, however, are often challenging to study due to the vast areas involved. We used genetic markers and simulations of physical transport within an ocean circulation model to gain understanding into the origin ofjuvenile hawksbill sea turtles (Eretmochelys imbricata) found at Ascension Island, a foraging ground that is thousands of kilometers from known nesting beaches. Regional origin of genetic markers suggests that turtles are from Western Atlantic (86%) and Eastern Atlantic (14%) rookeries. In contrast, numerical simulations of transport by ocean currents suggest that passive dispersal from the western sources would be negligible and instead would primarily be from the East, involving rookeries along Western Africa (i.e., Principe Island) and, potentially, from as far as the Indian Ocean (e.g., Mayotte and the Seychelles). Given that genetic analysis identified the presence of a haplotype endemic to Brazilian hawksbill rookeries at Ascension, we examined the possible role of swimming behavior by juvenile hawksbills from NE Brazil on their current-borne transport to Ascension Island by performing numerical experiments in which swimming behavior was simulated for virtual particles (simulated turtles). We found that oriented swimming substantially influenced the distribution of particles, greatly altering the proportion of particles dispersing into the North Atlantic and South Atlantic. Assigning location-dependent orientation behavior to particles allowed them to reach Ascension Island, remain in favorable temperatures, encounter productive foraging areas, and return to the vicinity of their natal site. The age at first arrival to Ascension (4.5-5.5 years) of these particles corresponded well to estimates of hawksbill age based on their size. Our findings suggest that ocean currents and swimming behavior play an important role in the oceanic ecology of sea turtles and other marine animals.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0022-0981 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 333
Lien permanent pour cet enregistrement
 

 
Auteur Cuif, M.; Keller, F.; Chateau, O.; Kaplan, D.; Labonne, M.; Lett, C.; Vigliola, L.
Titre Evaluation of transgenerational isotope labeling of embryonic otoliths in a coral reef damselfish with single and repeated injections of enriched (137)Barium Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Marine Biology and Ecology
Volume 459 Numéro Pages 151-159
Mots-Clés Barium isotopes; Connectivity; Dascyllus aruanus; La-Icp-Ms; microchemistry; Otolith; Transgenerational marking
Résumé Quantifying the larval dispersal component of population connectivity is extremely challenging due to the many difficulties associated with directly observing larvae in their marine environment. Transgenerational isotope labeling is a recent empirical technique that addresses this challenge. It relies on the transmission of an artificially enriched stable isotope (e.g., Ba-137) from gravid females to the embryonic otoliths of their offspring, allowing for mass permanent marking of larvae. Before implementing transgenerational isotope labeling in the wild, it is essential to investigate the transmission longevity of the mark from females to larvae and to assess the potential negative effects on females and their offspring. We injected females of the Humbug damselfish, Dascyllus aruanus, with an enriched Ba-137 solution and reared the resulting progeny to test the marking success and the transmission longevity of the mark, as well as determine potential effects of transgenerational isotope labeling on spawning frequency and size of 1-day eggs and 2-day larvae. Three different single-injection dosages (0.5, 1 and 5 mu g of Ba-137 g(-1) fish weight) were tested, as well as monthly repeated injections of the lowest dosage over a whole reproductive season. We implemented a new method that allows extracting otoliths of newly hatched larvae and analyzing them using laser ablation coupled plasma mass spectrometry (ICP-MS). We showed that for D. aruanus, injection with a low dose (0.5 mu g Ba-137 g(-1), fish weight) produced consistently significantly marked larvae with a half-life for successful enriched Ba mark transmission of approximately 1 month, and that monthly repeated injections of this dose did not negatively impact spawning success or condition of eggs and larvae. Monthly repeated injections of enriched Ba isotope injections at 0.5 mu g Ba-137 g(-1) fish weight will therefore present an effective means of mass marking D. aruanus larvae throughout an entire reproductive season.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN (up) 0022-0981 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 357
Lien permanent pour cet enregistrement