|   | 
Détails
   web
Enregistrements
Auteur (up) Darnaude, A.M.; Sturrock, A.; Trueman, C.N.; Mouillot, D.; Eimf; Campana, S.E.; Hunter, E.
Titre Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes? Type Article scientifique
Année 2014 Publication Revue Abrégée PLoS ONE
Volume 9 Numéro 10 Pages
Mots-Clés
Résumé Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1195
Lien permanent pour cet enregistrement
 

 
Auteur (up) Delzor, A.; Couratier, P.; Boumédiène, F.; Nicol, M.; Druet-Cabanac, M.; Paraf, F.; Méjean, A.; Ploux, O.; Leleu, J.-P.; Brient, L.; Lengronne, M.; Pichon, V.; Combès, A.; El Abdellaoui, S.; Bonneterre, V.; Lagrange, E.; Besson, G.; Bicout, D.J.; Boutonnat, J.; Camu, W.; Pageot, N.; Juntas-Morales, R.; Rigau, V.; Masseret, E.; Abadie, E.; Preux, P.-M.; Marin, B.
Titre Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme Type Article scientifique
Année 2014 Publication Revue Abrégée BMJ Open
Volume 4 Numéro 8 Pages
Mots-Clés
Résumé Introduction Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS.Methods and analysis The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case–control study, in the subpopulation living in the identified areas, will gather information about patients’ occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls.Ethics and dissemination The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 818
Lien permanent pour cet enregistrement
 

 
Auteur (up) Dias, M.S.; Oberdorff, T.; Hugueny, B.; Leprieur, F.; Jezequel, C.; Cornu, J.F.; Brosse, S.; Grenouillet, G.; Tedesco, P.A.
Titre Global imprint of historical connectivity on freshwater fish biodiversity Type Article scientifique
Année 2014 Publication Revue Abrégée Ecology Letters
Volume 17 Numéro 9 Pages 1130-1140
Mots-Clés Alpha diversity; Beta diversity; Biogeography; Quaternary climate changes; africa; climate changes; contemporary; diversity patterns; endemism; evolution; freshwater fish; global; history; north-america; richness; river systems; scale; sea-level changes; species turnover; species-richness
Résumé The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1461-023x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 631
Lien permanent pour cet enregistrement
 

 
Auteur (up) Doan, T.T.; Bouvier, C.; Bettarel, Y.; Bouvier, T.; Henry-des-Tureaux, T.; Janeau, J.L.; Lamballe, P.; Nguyen, B.V.; Jouquet, P.
Titre Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems Type Article scientifique
Année 2014 Publication Revue Abrégée Applied Soil Ecology
Volume 73 Numéro Pages 78-86
Mots-Clés Mesocosms; Organic fertilization; Soil; Virus; bacteria; water
Résumé Vermicompost and biochar amendments are management practices which may contribute to sustainable agroecosystems by reducing dependence on inorganic fertilizers. However, little is known about their impacts on soil microorganisms and their transfer and evolution in connected aquatic systems. The aim of this study was to determine the influence of organic manure (buffalo manure, compost or vermicompost) and biochar amendments on bacterial and viral properties in soil and water. A three year experiment was carried out with terrestrial mesocosms which were used to test the effect of organic matter amendment on maize growth. In the last year of the experiment, runoff and infiltration waters from the terrestrial mesocosms were transferred to aquatic mesocosms. Organic fertilization improved soil properties (higher C, N content and pH H 2 O ) and as a consequence increased soil bacterial and viral abundance. Bacterial diversity (Shannon ‘H’ and richness ‘S’ indices calculated from DGGE fingerprint) was also enhanced after the continuous application of organic amendments. Compared with compost, vermicompost reduced viral abundance and S but similar H and bacterial abundance were observed. The pH H 2 O , C content and bacterial and viral abundance increased in the aquatic mesocosms following organic fertilization. As a consequence, bacterial and viral diversity also increased in the water, although no differences were found between compost and vermicompost. Biochar increased soil bacterial abundance for the mineral fertilizer treatment but did not influence bacterial and viral abundance in water. However, the combination of biochar and vermicompost led to an increase of viruses in soil and a reduction of bacteria in water. Similarity dendrograms from the DGGE banding patterns showed that the structure of bacterial communities was mainly influenced by the fertilizer treatments in soil but by the presence of biochar in water. In conclusion, this study demonstrated that the nature of the organic amendment has important consequences on both soil and water microbial abundance and diversity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0929-1393 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 673
Lien permanent pour cet enregistrement
 

 
Auteur (up) Dueri, S.; Bopp, L.; Maury, O.
Titre Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution Type Article scientifique
Année 2014 Publication Revue Abrégée Global Change Biology
Volume 20 Numéro 3 Pages 742-753
Mots-Clés Apecosm-E; Atlantic Ocean; global warming; Indian Ocean; Katsuwonus pelamis; Pacific Ocean; scenario; Tropical tuna
Résumé Climate-induced changes in the physical, chemical, and biological environment are expected to increasingly stress marine ecosystems, with important consequences for fisheries exploitation. Here, we use the APECOSM-E numerical model (Apex Predator ECOSystem Model – Estimation) to evaluate the future impacts of climate change on the physiology, spatial distribution, and abundance of skipjack tuna, the worldwide most fished species of tropical tuna. The main novelties of our approach lie in the mechanistic link between environmental factors, metabolic rates, and behavioral responses and in the fully three dimensional representation of habitat and population abundance. Physical and biogeochemical fields used to force the model are provided by the last generation of the IPSL-CM5 Earth System Model run from 1990 to 2100 under a &8216;business-as-usual&8217; scenario (RCP8.5). Our simulations show significant changes in the spatial distribution of skipjack tuna suitable habitat, as well as in their population abundance. The model projects deterioration of skipjack habitat in most tropical waters and an improvement of habitat at higher latitudes. The primary driver of habitat changes is ocean warming, followed by food density changes. Our projections show an increase of global skipjack biomass between 2010 and 2050 followed by a marked decrease between 2050 and 2095. Spawning rates are consistent with population trends, showing that spawning depends primarily on the adult biomass. On the other hand, growth rates display very smooth temporal changes, suggesting that the ability of skipjack to keep high metabolic rates in the changing environment is generally effective. Uncertainties related to our model spatial resolution, to the lack or simplification of key processes and to the climate forcings are discussed.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1354-1013 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 327
Lien permanent pour cet enregistrement