bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
  Enregistrement Liens
Auteur (up) Joo, R.; Bertrand, S.; Tam, J.; Fablet, R. url  doi
  Titre Hidden Markov Models: The Best Models for Forager Movements? Type Article scientifique
  Année 2013 Publication Revue Abrégée PLoS ONE  
  Volume 8 Numéro 8 Pages  
  Résumé One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs). We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs). They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of \textgreater200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour), while their behavioural modes (fishing, searching and cruising) were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines) for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%), significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 260  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 

Save Citations:
Export Records: