bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrement Liens
Auteur (up) Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Marcia Barbosa, A.; Dormann, C.F.; Elith, J.; Embling, C.B.; Ervin, G.N.; Fisher, R.; Gould, S.; Graf, R.F.; Gregr, E.J.; Halpin, P.N.; Heikkinen, R.K.; Heinanen, S.; Jones, A.R.; Krishnakumar, P.K.; Lauria, V.; Lozano-Montes, H.; Mannocci, L.; Mellin, C.; Mesgaran, M.B.; Moreno-Amat, E.; Mormede, S.; Novaczek, E.; Oppel, S.; Crespo, G.O.; Peterson, A.T.; Rapacciuolo, G.; Roberts, J.J.; Ross, R.E.; Scales, K.L.; Schoeman, D.; Snelgrove, P.; Sundblad, G.; Thuiller, W.; Torres, L.G.; Verbruggen, H.; Wang, L.; Wenger, S.; Whittingham, M.J.; Zharikov, Y.; Zurell, D.; Sequeira, A.M.M. doi  openurl
  Titre Outstanding Challenges in the Transferability of Ecological Models Type Article scientifique
  Année 2018 Publication Revue Abrégée Trends Ecol. Evol.  
  Volume 33 Numéro 10 Pages 790-802  
  Mots-Clés abundance; biotic interactions; climate-change; decision-making; distributions; habitat selection; niche; predictive models; species distribution models; temporal transferability  
  Résumé Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0169-5347 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2447  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: