bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
  Enregistrement Liens
Auteur (up) Espinosa, F.; Rivera-Ingraham, G.A. doi  isbn
  Titre Biological Conservation of Giant Limpets: The Implications of Large Size Type Chapitre de livre
  Année 2017 Publication Revue Abrégée  
  Volume Numéro Pages 105-155  
  Mots-Clés cymbula-nigra gastropoda; endangered limpet; lottia-gigantea; marine protected areas; mussel mytilus-galloprovincialis; patella-ferruginea gastropoda; population-structure; scutellastra-argenvillei; sex-change; south-african limpet  
  Résumé Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35 cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10 cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.  
  Auteur institutionnel Thèse  
  Editeur Elsevier Academic Press Inc Lieu de Publication San Diego Éditeur Curry, B.E.  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé Advances in Marine Biology, Vol 76  
  Volume de collection 76 Numéro de collection Edition  
  ISSN ISBN 978-0-12-812402-4 978-0-12-812401-7 Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2180  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 

Save Citations:
Export Records: