bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrement Liens
Auteur (up) Authier, M.; Saraux, C.; Péron, C. doi  openurl
  Titre Variable selection and accurate predictions in habitat modelling: a shrinkage approach Type Article scientifique
  Année 2017 Publication Revue Abrégée Ecography  
  Volume 40 Numéro 4 Pages 549-560  
  Mots-Clés account; distributional data; Ecology; indian-ocean; inference; Mediterranean Sea; regression methods; small pelagic fish; spatial autocorrelation; species distribution models  
  Résumé Habitat modelling is increasingly relevant in biodiversity and conservation studies. A typical application is to predict potential zones of specific conservation interest. With many environmental covariates, a large number of models can he investigated but multi-model inference may become impractical. Shrinkage regression overcomes this issue by dealing with the identification and accurate estimation of effect size for prediction. In a Bayesian framework we investigated the use of a shrinkage prior, the Horseshoe, for variable selection in spatial generalized linear models (GLM). As study cases, we considered 5 datasets on small pelagic fish abundance in the Gulf of Lion (Mediterranean Sea, France) and 9 environmental inputs. We compared the predictive performances of a simple kriging model, a full spatial GLM model with independent normal priors for regression coefficients, a full spatial GLM model with a Horseshoe prior for regression coefficients and 2 zero-inflated models (spatial and non-spatial) with a Horseshoe prior. Predictive performances were evaluated by cross validation on a hold-out subset of the data: models with a Horseshoe prior performed best, and the full model with independent normal priors worst. With an increasing number of inputs, extrapolation quickly became pervasive as we tried to predict from novel combinations of covariate values. By shrinking regression coefficients with a Horseshoe prior, only one model needed to be fitted to the data in order to obtain reasonable and accurate predictions, including extrapolations.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0906-7590 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2130  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: