bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrement Liens
Auteur (up) Catherine, A.; Selma, M.; Mouillot, D.; Troussellier, M.; Bernard, C. url  doi
openurl 
  Titre Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes Type Article scientifique
  Année 2016 Publication Revue Abrégée Science of The Total Environment  
  Volume 559 Numéro Pages 74-83  
  Mots-Clés Lake- and catchment-scale; Phytoplankton; Productivity–diversity relationship; Random forest; Residuals analysis; species richness  
  Résumé Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0048-9697 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1566  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: