bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (up) Theuerkauff, D.; Rivera-Ingraham, G.A.; Roques, J.A.C.; Azzopardi, L.; Bertini, M.; Lejeune, M.; Farcy, E.; Lignot, J.-H.; Sucre, E. doi  openurl
  Titre Salinity Variation in a Mangrove Ecosystem: A Physiological Investigation to Assess Potential Consequences of Salinity Disturbances on Mangrove Crabs Type Article scientifique
  Année 2018 Publication Revue Abrégée Zool. Stud.  
  Volume 57 Numéro Pages 36  
  Mots-Clés Bioenergetics; blue-crab; callinectes-sapidus; carcinus-maenas; Decapods; dilocarcinus-pagei brachyura; eriocheir-sinensis; fiddler-crabs; fresh-water; grapsid crabs; Mangrove; Osmoregulation; oxidative stress; Salinity-induced oxidative stress; waste-water treatment  
  Résumé Dimitri Theuerkauff, Georgina A. Rivera-Ingraham, Jonathan A.C. Roques, Laurence Azzopardi, Marine Bertini, Mathilde Lejeune, Emilie Farcy, Jehan-Herve Lignot, and Elliott Sucre (2018) Salinity is one of the main environmental factors determining coastal species distribution. However, in the specific case of mangrove crabs, salinity selection cannot be understood through ecological approaches alone. Yet understanding this issue is crucial in the context of mangrove conservation, since this ecosystem is often used as biofilter of (low-salinity) wastewater. Crabs are keystone species in this mangrove ecosystem and are differentially affected by salinity. We hypothesize that crab salinity selection may be partly explained by specific salinity-induced physiological constraints associated with osmoregulation, energy and redox homeostasis. To test this, the response to salinity variation was analysed in two landward mangrove crabs: the fiddler crab Tubuca urvillei, which inhabits low-salinity areas of the mangrove, and the red mangrove crab Neosarmatium meinerti, which lives in areas with higher salinity. Results confirm that both species are strong hypo-/hyper-osmoregulators that deal easily with large salinity variations. Such shifts in salinity do not induce changes in energy expenditure (measured as oxygen consumption) or in the production of reactive oxygen species. However, T. urvillei is physiologically suited to habitats with brackish water, since it presents i) high hemolymph osmolalities over a wider range of salinities and lower osmoregulatory capacity in seawater, ii) high Na+/K+-ATPase (NKA) activity in the posterior osmoregulatory gills and iii) a thicker osmoregulatory epithelium along the posterior gill lamellae. Therefore, while environmental salinity alone cannot directly explain fiddler and red mangrove crab distributions, our data suggest that salinity selection is indeed influenced by specific physiological adjustments.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1021-5506 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2424  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Turon, V.; Trably, E.; Fouilland, E.; Steyer, J.-P. doi  openurl
  Titre Potentialities of dark fermentation effluents as substrates for microalgae growth: A review Type Article scientifique
  Année 2016 Publication Revue Abrégée Process Biochem.  
  Volume 51 Numéro 11 Pages 1843-1854  
  Mots-Clés Acidogenesis; alga crypthecodinium-cohnii; Biohydrogen; biohydrogen production; chlorella-vulgaris; Dark fermentation; fed-batch cultivation; food waste; heterotrophic microalgae; Heterotrophy; hydrogen-production; Microalgae; mixotrophic growth; volatile fatty-acids; waste-water treatment  
  Résumé In recent years, coupling bacterial dark fermentation (DF) and heterotrophic cultivation of microalgae (HCM) has been pointed out as a promising sustainable approach for producing both gaseous and liquid biofuels. Complex organic waste and effluents that are not susceptible to be directly degraded by microalgae are first converted into volatile fatty acids (VFAs) and hydrogen by DF. In this work, the feasibility of using DF effluents to sustain HCM has been thoroughly reviewed and evaluated. Promising perspectives in terms of microalgae biomass and lipids production are proposed and can be extended as guidelines to promote HCM whatever the organic waste used. Abiotic and biotic factors from DF effluents that promote or inhibit microalgae growth are discussed as well as the use of unsterile DF effluents. Overall, the microalgae growth is favored on effluents containing high acetate concentration (>3 g L-1), with a high acetate:butyrate ratio (>2.5), and when pH is strictly controlled. At a low acetate:butyrate ratio (<1) and/or high total metabolites concentrations (>10 g L-1), a low substrate:microalgae ratio and the presence of light appear to enhance microalgae growth. Butyrate content appears to be a key factor when coupling DF/HCM since high butyrate concentration inhibits the microalgae growth. (C) 2016 Elsevier Ltd. All rights reserved.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1359-5113 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1678  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: