|   | 
Détails
   web
Enregistrements
Auteur van der Oost, R.; McKenzie, D.J.; Verweij, F.; Satumalay, C.; van der Molen, N.; Winter, M.J.; Chipman, J.K.
Titre Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Environ. Toxicol. Pharmacol.
Volume 74 Numéro Pages 103301
Mots-Clés Adverse outcome pathways; bioanalytical strategy; Biochemical & physiological biomarkers; biomarker responses; Ecological studies; eel anguilla-anguilla; environmental risk-assessment; Micropollutants risk assessment; oxygen-consumption; rainbow-trout; sole parophrys-vetulus; swimming performance; trout oncorhynchus-mykiss; xenobiotic-metabolizing enzymes
Résumé The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MICE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MICE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1382-6689 ISBN Médium
Région Expédition Conférence
Notes WOS:000514007200016 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2753
Lien permanent pour cet enregistrement
 

 
Auteur Ferrari, S.; Horri, K.; Allal, F.; Vergnet, A.; Benhaim, D.; Vandeputte, M.; Chatain, B.; Begout, M.-L.
Titre Heritability of Boldness and Hypoxia Avoidance in European Seabass, Dicentrarchus labrax Type Article scientifique
Année (down) 2016 Publication Revue Abrégée PLoS One
Volume 11 Numéro 12 Pages e0168506
Mots-Clés atlantic salmon; behavioral plasticity; confinement stress; individual-differences; rainbow-trout; rearing conditions; Risk-taking; salmon salmo-salar; stress-coping styles; trout oncorhynchus-mykiss
Résumé To understand the genetic basis of coping style in European seabass, fish from a full factorial mating (10 females x 50 males) were reared in common garden and individually tagged. Individuals coping style was characterized through behavior tests at four different ages, categorizing fish into proactive or reactive: a hypoxia avoidance test (at 255 days post hatching, dph) and 3 risk-taking tests (at 276, 286 and 304 dph). We observed significant heritability of the coping style, higher for the average of risk-taking scores (h(2) = 0.45 +/- 0.14) than for the hypoxia avoidance test (h(2) = 0.19 +/- 0.10). The genetic correlations between the three risk-taking scores were very high (r(A) = 0.96-0.99) showing that although their repeatability was moderately high (r(P) = 0.64-0.72), successive risk-taking tests evaluated the same genetic variation. A mild genetic correlation between the results of the hypoxia avoidance test and the average of risk-taking scores (0.45 +/- 0.27) suggested that hypoxia avoidance and risk-taking tests do not address exactly the same behavioral and physiological responses. Genetic correlations between weight and risk taking traits showed negative values whatever the test used in our population i.e. reactive individual weights were larger. The results of this quantitative genetic analysis suggest a potential for the development of selection programs based on coping styles that could increase seabass welfare without altering growth performances. Overall, it also contributes to a better understanding of the origin and the significance of individual behavioral differences.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2071
Lien permanent pour cet enregistrement
 

 
Auteur Rogers, N.J.; UrbinaLt, M.A.; Reardon, E.E.; McKenzie, D.J.; Wilsonl, R.W.
Titre A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P-crit) Type Article scientifique
Année (down) 2016 Publication Revue Abrégée Conserv. Physiol.
Volume 4 Numéro Pages cow012
Mots-Clés Carbon dioxide; carp cyprinus-carpio; critical oxygen tension; eel anguilla-anguilla; environmental hypoxia; fresh-water fishes; goldfish carassius-auratus; inanga galaxias-maculatus; intermittent-flow respirometry; metabolic rate; oxygen and capacity limitation of thermal tolerance; physiological trait; postprandial metabolic-response; snapper pagrus-auratus; trout oncorhynchus-mykiss
Résumé Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P-crit)m has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P-crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P, including temperature, CO,, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P-crit; 20% of variation in the P-crit, data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO, within a closed respirometer during the measurement of P-crit. Modelling suggests that the final partial pressure of CO, reached can vary from 650 to 3500 mu atm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P it itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2051-1434 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1656
Lien permanent pour cet enregistrement
 

 
Auteur Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année (down) 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601
Lien permanent pour cet enregistrement
 

 
Auteur Lefevre, S.; Domenici, P.; McKenzie, D.J.
Titre Swimming in air-breathing fishes Type Article scientifique
Année (down) 2014 Publication Revue Abrégée Journal of Fish Biology
Volume 84 Numéro 3 Pages 661-681
Mots-Clés acid-base; aerobic metabolism; amia-calva; bimodal respiration; dicentrarchus-labrax; european sea-bass; exercise; exhaustive exercise; gar lepisosteus-platyrhincus; megalops-cyprinoides; pacific; partitioning; rainbow-trout; recovery; respiratory; tarpon; trout oncorhynchus-mykiss
Résumé Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-1112 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 877
Lien permanent pour cet enregistrement