|   | 
Détails
   web
Enregistrements
Auteur Lamarre, S.G.; Ditlecadet, D.; McKenzie, D.J.; Bonnaud, L.; Driedzic, W.R.
Titre Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis Type Article scientifique
Année 2012 Publication Revue Abrégée Am. J. Physiol.-Regul. Integr. Comp. Physiol.
Volume 303 Numéro 4 Pages R427-R437
Mots-Clés Rna; cathepsin; cephalopod; cephalopods; gadus-morhua l; growth; metabolic enzymes; metabolism; octopus-vulgaris; polyubiquitin; proteasome; rainbow-trout; skeletal-muscle; squid; starvation; triglyceride; trout oncorhynchus-mykiss
Résumé Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR. Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 303: R427-R437, 2012. First published May 30, 2012; doi:10.1152/ajpregu.00077.2012.-Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome beta-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0363-6119 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection (down) 702
Lien permanent pour cet enregistrement
 

 
Auteur Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection (down) 601
Lien permanent pour cet enregistrement
 

 
Auteur Jourdan-Pineau, H.; Dupont-Prinet, A.; Claireaux, G.; McKenzie, D.J.
Titre An Investigation of Metabolic Prioritization in the European Sea Bass, Dicentrarchus labrax Type Article scientifique
Année 2010 Publication Revue Abrégée Physiol. Biochem. Zool.
Volume 83 Numéro 1 Pages 68-77
Mots-Clés Hypoxia; blood-flow; cardiac-performance; dynamic action; largemouth bass; oxygen-consumption; respiratory metabolism; salmo-gairdneri; swimming performance; trout oncorhynchus-mykiss
Résumé We investigated the ability of European sea bass (Dicentrarchus labrax) to respond simultaneously to the metabolic demands of specific dynamic action (SDA) and aerobic exercise and how this was influenced by moderate hypoxia (50% air saturation). At 3 h after feeding in normoxia at 20 degrees C, SDA raised the instantaneous oxygen uptake (Mo(2)) of sea bass by 47% +/- 18% (mean +/- SEM, N = 7) above their standard metabolic rate (SMR) when fasted. This metabolic load was sustained throughout an incremental exercise protocol until fatigue, with a 14% +/- 3% increase in their maximum aerobic metabolic rate (MMR) relative to their fasted rate. Their incremental critical swimming speed (U(crit)) did not differ between fasted and fed states. Thus, in normoxia, the bass were able to meet the combined oxygen demands of SDA and aerobic exercise. In hypoxia, the sea bass suffered a significant decline in MMR and U(crit) relative to their normoxic performance. The SDA response was similar to normoxia (84% +/- 24% above fasted SMR at 3 h after feeding), but although this load was sustained at low swimming speeds, it gradually disappeared as swimming speed increased. As a result, the hypoxic sea bass exhibited no difference in their fasted versus fed MMR. Hypoxic U(crit) did not, however, differ between fasted and fed states, indicating that the sea bass deferred their SDA to maintain exercise performance. The results demonstrate that, in normoxia, the sea bass possesses excess cardiorespiratory capacity beyond that required for maximal aerobic exercise. The excess capacity is lost when oxygen availability is limited in hypoxia, and, under these conditions, the sea bass prioritize exercise performance. Thus, environmental conditions (oxygen availability) had a significant effect on patterns of oxygen allocation in sea bass and revealed intrinsic prioritization among conflicting metabolic demands.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1522-2152 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection (down) 436
Lien permanent pour cet enregistrement