bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (down) van der Oost, R.; McKenzie, D.J.; Verweij, F.; Satumalay, C.; van der Molen, N.; Winter, M.J.; Chipman, J.K. doi  openurl
  Titre Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring Type Article scientifique
  Année 2020 Publication Revue Abrégée Environ. Toxicol. Pharmacol.  
  Volume 74 Numéro Pages 103301  
  Mots-Clés Adverse outcome pathways; bioanalytical strategy; Biochemical & physiological biomarkers; biomarker responses; Ecological studies; eel anguilla-anguilla; environmental risk-assessment; Micropollutants risk assessment; oxygen-consumption; rainbow-trout; sole parophrys-vetulus; swimming performance; trout oncorhynchus-mykiss; xenobiotic-metabolizing enzymes  
  Résumé The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MICE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MICE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1382-6689 ISBN Médium  
  Région Expédition Conférence  
  Notes WOS:000514007200016 Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2753  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Rogers, N.J.; UrbinaLt, M.A.; Reardon, E.E.; McKenzie, D.J.; Wilsonl, R.W. doi  openurl
  Titre A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P-crit) Type Article scientifique
  Année 2016 Publication Revue Abrégée Conserv. Physiol.  
  Volume 4 Numéro Pages cow012  
  Mots-Clés Carbon dioxide; carp cyprinus-carpio; critical oxygen tension; eel anguilla-anguilla; environmental hypoxia; fresh-water fishes; goldfish carassius-auratus; inanga galaxias-maculatus; intermittent-flow respirometry; metabolic rate; oxygen and capacity limitation of thermal tolerance; physiological trait; postprandial metabolic-response; snapper pagrus-auratus; trout oncorhynchus-mykiss  
  Résumé Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P-crit)m has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P-crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P, including temperature, CO,, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P-crit; 20% of variation in the P-crit, data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO, within a closed respirometer during the measurement of P-crit. Modelling suggests that the final partial pressure of CO, reached can vary from 650 to 3500 mu atm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P it itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 2051-1434 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1656  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Li, X.; Blancheton, J.-P.; Liu, Y.; Triplet, S.; Michaud, L. url  doi
openurl 
  Titre Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems Type Article scientifique
  Année 2014 Publication Revue Abrégée Aquaculture International  
  Volume 22 Numéro 4 Pages 1263-1282  
  Mots-Clés culture-system; disinfection; european sea bass; Orp; ozonated; Ozone; performance; Ras; responses; rock lobster; salinity; seawater; sublethal exposure; trout oncorhynchus-mykiss; water-quality  
  Résumé The direct impact of oxidation-reduction potential (ORP) on fish welfare and water quality in marine recirculating aquaculture systems (RAS) is poorly documented. In this study, the effects of the fish size (S-1, S-2, S-3) and ORP level (normal, four successive levels) on the performance of European sea bass (Dicentrarchus labrax) were investigated. Three size fish were distributed into two RAS (RAS and RAS O-3). Ozone was injected into RAS O-3 to increase the ORP level. The ORP was stabilized to four successive levels: 260-300, 300-320, 320-350, and 300-320 mV in fish tanks during four periods (P1-4). At the last day of each period, the hematological parameters, plasma protein and mortality of sea bass were analyzed. Two-way ANOVA revealed that several hematological parameters, including pH, hematocrit, concentrations of oxygen, carbon dioxide, glucose (Glu), ionized calcium, kalium, and hemoglobin, were significantly influenced by the increased ORP levels over the experimental period. The alteration in blood Glu and plasma protein concentration showed that ORP around 300-320 mV started to stress sea bass. Once the ORP exceeded 320 mV in the tanks during the P-3 period, mortality occurred even when total residual oxidants/ozone-produced oxidants was only 0.03-0.05 mg L-1 in the fish tanks. At the same time, plasma protein decreased notably due to appetite depression. After the decrease in ORP during the P-4 period, mortality continued. In conclusion, the results strongly suggest that for European sea bass in RAS, the ORP should not exceed 320 mV in the tanks. Once ozonation damaged fish, the effect seemed to be irreversible. However, how ORP affected related hematological parameters still need the further investigations.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0967-6120 ISBN Médium  
  Région Expédition Conférence  
  Notes <p>ISI Document Delivery No.: AL4MD<br/>Times Cited: 1<br/>Cited Reference Count: 35<br/>Li, Xian Blancheton, Jean-Paul Liu, Ying Triplet, Sebastien Michaud, Luigi<br/>National Natural Science Foundation of China [41306152]; National Science and Technology Support Program [2011BAD13B04]<br/>The authors would thank all the participants from the Ifremer Palavas station: Cyrille Przybyla, Myriam Callier, and Thibault Geoffroy for their contribution to the experiment and analyses. This work was supported by the National Natural Science Foundation of China (Grant No. 41306152) and National Science and Technology Support Program (Grant No. 2011BAD13B04).<br/>Springer<br/>Dordrecht</p> Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1168  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Lefevre, S.; Domenici, P.; McKenzie, D.J. url  doi
openurl 
  Titre Swimming in air-breathing fishes Type Article scientifique
  Année 2014 Publication Revue Abrégée Journal of Fish Biology  
  Volume 84 Numéro 3 Pages 661-681  
  Mots-Clés acid-base; aerobic metabolism; amia-calva; bimodal respiration; dicentrarchus-labrax; european sea-bass; exercise; exhaustive exercise; gar lepisosteus-platyrhincus; megalops-cyprinoides; pacific; partitioning; rainbow-trout; recovery; respiratory; tarpon; trout oncorhynchus-mykiss  
  Résumé Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0022-1112 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 877  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Lamarre, S.G.; Ditlecadet, D.; McKenzie, D.J.; Bonnaud, L.; Driedzic, W.R. url  doi
openurl 
  Titre Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis Type Article scientifique
  Année 2012 Publication Revue Abrégée Am. J. Physiol.-Regul. Integr. Comp. Physiol.  
  Volume 303 Numéro 4 Pages R427-R437  
  Mots-Clés Rna; cathepsin; cephalopod; cephalopods; gadus-morhua l; growth; metabolic enzymes; metabolism; octopus-vulgaris; polyubiquitin; proteasome; rainbow-trout; skeletal-muscle; squid; starvation; triglyceride; trout oncorhynchus-mykiss  
  Résumé Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR. Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 303: R427-R437, 2012. First published May 30, 2012; doi:10.1152/ajpregu.00077.2012.-Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome beta-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0363-6119 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 702  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: