|   | 
Détails
   web
Enregistrements
Auteur (down) Rogers, N.J.; UrbinaLt, M.A.; Reardon, E.E.; McKenzie, D.J.; Wilsonl, R.W.
Titre A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P-crit) Type Article scientifique
Année 2016 Publication Revue Abrégée Conserv. Physiol.
Volume 4 Numéro Pages cow012
Mots-Clés Carbon dioxide; carp cyprinus-carpio; critical oxygen tension; eel anguilla-anguilla; environmental hypoxia; fresh-water fishes; goldfish carassius-auratus; inanga galaxias-maculatus; intermittent-flow respirometry; metabolic rate; oxygen and capacity limitation of thermal tolerance; physiological trait; postprandial metabolic-response; snapper pagrus-auratus; trout oncorhynchus-mykiss
Résumé Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P-crit)m has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P-crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P, including temperature, CO,, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P-crit; 20% of variation in the P-crit, data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO, within a closed respirometer during the measurement of P-crit. Modelling suggests that the final partial pressure of CO, reached can vary from 650 to 3500 mu atm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P it itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2051-1434 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1656
Lien permanent pour cet enregistrement
 

 
Auteur (down) Li, X.; Blancheton, J.-P.; Liu, Y.; Triplet, S.; Michaud, L.
Titre Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems Type Article scientifique
Année 2014 Publication Revue Abrégée Aquaculture International
Volume 22 Numéro 4 Pages 1263-1282
Mots-Clés culture-system; disinfection; european sea bass; Orp; ozonated; Ozone; performance; Ras; responses; rock lobster; salinity; seawater; sublethal exposure; trout oncorhynchus-mykiss; water-quality
Résumé The direct impact of oxidation-reduction potential (ORP) on fish welfare and water quality in marine recirculating aquaculture systems (RAS) is poorly documented. In this study, the effects of the fish size (S-1, S-2, S-3) and ORP level (normal, four successive levels) on the performance of European sea bass (Dicentrarchus labrax) were investigated. Three size fish were distributed into two RAS (RAS and RAS O-3). Ozone was injected into RAS O-3 to increase the ORP level. The ORP was stabilized to four successive levels: 260-300, 300-320, 320-350, and 300-320 mV in fish tanks during four periods (P1-4). At the last day of each period, the hematological parameters, plasma protein and mortality of sea bass were analyzed. Two-way ANOVA revealed that several hematological parameters, including pH, hematocrit, concentrations of oxygen, carbon dioxide, glucose (Glu), ionized calcium, kalium, and hemoglobin, were significantly influenced by the increased ORP levels over the experimental period. The alteration in blood Glu and plasma protein concentration showed that ORP around 300-320 mV started to stress sea bass. Once the ORP exceeded 320 mV in the tanks during the P-3 period, mortality occurred even when total residual oxidants/ozone-produced oxidants was only 0.03-0.05 mg L-1 in the fish tanks. At the same time, plasma protein decreased notably due to appetite depression. After the decrease in ORP during the P-4 period, mortality continued. In conclusion, the results strongly suggest that for European sea bass in RAS, the ORP should not exceed 320 mV in the tanks. Once ozonation damaged fish, the effect seemed to be irreversible. However, how ORP affected related hematological parameters still need the further investigations.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-6120 ISBN Médium
Région Expédition Conférence
Notes <p>ISI Document Delivery No.: AL4MD<br/>Times Cited: 1<br/>Cited Reference Count: 35<br/>Li, Xian Blancheton, Jean-Paul Liu, Ying Triplet, Sebastien Michaud, Luigi<br/>National Natural Science Foundation of China [41306152]; National Science and Technology Support Program [2011BAD13B04]<br/>The authors would thank all the participants from the Ifremer Palavas station: Cyrille Przybyla, Myriam Callier, and Thibault Geoffroy for their contribution to the experiment and analyses. This work was supported by the National Natural Science Foundation of China (Grant No. 41306152) and National Science and Technology Support Program (Grant No. 2011BAD13B04).<br/>Springer<br/>Dordrecht</p> Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1168
Lien permanent pour cet enregistrement
 

 
Auteur (down) Lefevre, S.; Domenici, P.; McKenzie, D.J.
Titre Swimming in air-breathing fishes Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Fish Biology
Volume 84 Numéro 3 Pages 661-681
Mots-Clés acid-base; aerobic metabolism; amia-calva; bimodal respiration; dicentrarchus-labrax; european sea-bass; exercise; exhaustive exercise; gar lepisosteus-platyrhincus; megalops-cyprinoides; pacific; partitioning; rainbow-trout; recovery; respiratory; tarpon; trout oncorhynchus-mykiss
Résumé Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-1112 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 877
Lien permanent pour cet enregistrement
 

 
Auteur (down) Lamarre, S.G.; Ditlecadet, D.; McKenzie, D.J.; Bonnaud, L.; Driedzic, W.R.
Titre Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis Type Article scientifique
Année 2012 Publication Revue Abrégée Am. J. Physiol.-Regul. Integr. Comp. Physiol.
Volume 303 Numéro 4 Pages R427-R437
Mots-Clés Rna; cathepsin; cephalopod; cephalopods; gadus-morhua l; growth; metabolic enzymes; metabolism; octopus-vulgaris; polyubiquitin; proteasome; rainbow-trout; skeletal-muscle; squid; starvation; triglyceride; trout oncorhynchus-mykiss
Résumé Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR. Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 303: R427-R437, 2012. First published May 30, 2012; doi:10.1152/ajpregu.00077.2012.-Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome beta-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0363-6119 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 702
Lien permanent pour cet enregistrement
 

 
Auteur (down) Killen, S.S.; Marras, S.; McKenzie, D.J.
Titre Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Biology
Volume 217 Numéro 6 Pages 859-865
Mots-Clés Compensatory growth; Ecophysiology; Food deprivation; Foraging; Locomotion; atlantic; catch-up growth; cod; dicentrarchus-labrax; ecological performance; gadus-morhua; long-term starvation; metabolic responses; salmon; teleost fish; trade-off; trade-offs; trout oncorhynchus-mykiss
Résumé While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 601
Lien permanent pour cet enregistrement