bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (up) Keller, S.; Quetglas, A.; Puerta, P.; Bitetto, I.; Casciaro, L.; Cuccu, D.; Esteban, A.; Garcia, C.; Garofalo, G.; Guijarro, B.; Josephides, M.; Jadaud, A.; Lefkaditou, E.; Maiorano, P.; Manfredi, C.; Marceta, B.; Micallef, R.; Peristeraki, P.; Relini, G.; Sartor, P.; Spedicato, M.T.; Tserpes, G.; Hidalgo, M. doi  openurl
  Titre Environmentally driven synchronies of Mediterranean cephalopod populations Type Article scientifique
  Année 2017 Publication Revue Abrégée Prog. Oceanogr.  
  Volume 152 Numéro Pages 1-14  
  Mots-Clés atlantic bluefin tuna; balearic sea; Cephalopods; Dynamic factor analysis; ecological niche approach; fisheries; fluctuations; hake merluccius-merluccius; Illex coindetii; life-history; Mediterranean; medits; octopus; Octopus vulgaris; squid; Synchrony; time-series  
  Résumé The Mediterranean Sea is characterized by large scale gradients of temperature, productivity and salinity, in addition to pronounced mesoscale differences. Such a heterogeneous system is expected to shape the population dynamics of marine species. On the other hand, prevailing environmental and climatic conditions at whole basin scale may force spatially distant populations to fluctuate in synchrony. Cephalopods are excellent case studies to test these hypotheses owing to their high sensitivity to environmental conditions. Data of two cephalopod species with contrasting life histories (benthic octopus vs nectobenthic squid), obtained from scientific surveys carried out throughout the Mediterranean during the last 20 years were analyzed. The objectives of this study and the methods used to achieve them (in parentheses) were: (i) to investigate synchronies in spatially separated populations (decorrelation analysis); (ii) detect underlying common abundance trends over distant regions (dynamic factor analysis, DFA); and (iii) analyse putative influences of key environmental drivers such as productivity and sea surface temperature on the population dynamics at regional scale (general linear models, GLM). In accordance with their contrasting spatial mobility, the distance from where synchrony could no longer be detected (decorrelation scale) was higher in squid than in octopus (349 vs 217 km); for comparison, the maximum distance between locations was 2620 km. The DFA revealed a general increasing trend in the abundance of both species in most areas, which agrees with the already reported worldwide proliferation of cephalopods. DFA results also showed that population dynamics are more similar in the eastern than in the western Mediterranean basin. According to the GLM models, cephalopod populations were negatively affected by productivity, which would be explained by an increase of competition and predation by fishes. While warmer years coincided with declining octopus numbers, areas of high sea surface temperature showed higher densities of squid. Our results are relevant for regional fisheries management and demonstrate that the regionalisation objectives envisaged under the new Common Fishery Policy may not be adequate for Mediterranean cephalopod stocks. (C) 2017 Elsevier Ltd. All rights reserved.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0079-6611 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2132  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Lamarre, S.G.; Ditlecadet, D.; McKenzie, D.J.; Bonnaud, L.; Driedzic, W.R. url  doi
openurl 
  Titre Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis Type Article scientifique
  Année 2012 Publication Revue Abrégée Am. J. Physiol.-Regul. Integr. Comp. Physiol.  
  Volume 303 Numéro 4 Pages R427-R437  
  Mots-Clés Rna; cathepsin; cephalopod; cephalopods; gadus-morhua l; growth; metabolic enzymes; metabolism; octopus-vulgaris; polyubiquitin; proteasome; rainbow-trout; skeletal-muscle; squid; starvation; triglyceride; trout oncorhynchus-mykiss  
  Résumé Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR. Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 303: R427-R437, 2012. First published May 30, 2012; doi:10.1152/ajpregu.00077.2012.-Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome beta-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0363-6119 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 702  
Lien permanent pour cet enregistrement
 

 
Auteur (up) Roberts, M.J.; Mullon, C. url  doi
openurl 
  Titre First Lagrangian ROMS-IBM simulations indicate large losses of chokka squid Loligo reynaudii paralarvae from South Africa's Agulhas Bank Type Article scientifique
  Année 2010 Publication Revue Abrégée African Journal of Marine Science  
  Volume 32 Numéro Pages 71-84  
  Mots-Clés Africa; Agulhas; Bank; chokka; Ibm; Loligo; modelling; ocean; paralarvae; recruitment; reynaudii; South; squid  
  Résumé Present knowledge of ocean currents based on in situ observation and models suggests that passive biological material such as eggs and larvae can be advected offshore away from the Agulhas Bank, South Africa, and hence removed from the ecosystem on which their survival and recruitment depends. Such losses have been cited as the root cause of the sudden drop in annual squid catches experienced in 2001. In this study, a Lagrangian IBM (individual-based model) coupled to a ROMS (regional ocean model system) model was used to investigate this hypothesis. Three simulations were performed for 12 model months using neutrally buoyant particles released from the seabed (120 m) every second day on the mid-shelf of the eastern, central and western regions of the Agulhas Bank. Boundary effects and resolution precluded the release of virtual particles on the inshore spawning grounds. Particles were given lifespans of 40 days. Results demonstrated large particle losses from the eastern Agulhas Bank (76%) and the western Agulhas Bank (64%). In contrast, few particles were lost from the central Agulhas Bank (2%), making this, in terms of the model, the most suitable place on the Agulhas Bank for spawning. Visualisation of the ROMS outputs revealed that leakage on the eastern Agulhas Bank was caused by a cyclonic eddy resident in the Agulhas Bight. Similarly, leakage from the western Agulhas Bank was caused by deep-water cyclonic eddies in the adjacent Atlantic Ocean.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1814-232x ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 100  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: