|   | 
Détails
   web
Enregistrements
Auteur Briscoe, D.K.; Hobday, A.J.; Carlisle, A.; Scales, K.; Eveson, J.P.; Arrizabalaga, H.; Druon, J.N.; Fromentin, J.-M.
Titre Ecological bridges and barriers in pelagic ecosystems Type Article scientifique
Année 2017 Publication Revue Abrégée Deep-Sea Res. Part II-Top. Stud. Oceanogr.
Volume 140 Numéro Pages 182-192
Mots-Clés arctic marine mammals; atlantic bluefin tuna; Billfish; Brazilian episode; climate-change; el-nino; interannual variation; Marine mammal; marlin makaira-nigricans; Migration corridors; Oceanographic features; population connectivity; satellite archival tags; sea-turtles; site fidelity; species distribution; thunnus-maccoyii; Tuna
Résumé Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate mediated ecosystem change.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2178
Lien permanent pour cet enregistrement
 

 
Auteur Buisson, L.; Grenouillet, G.; Villeger, S.; Canal, J.; Laffaille, P.
Titre Toward a loss of functional diversity in stream fish assemblages under climate change Type Article scientifique
Année 2013 Publication Revue Abrégée Glob. Change Biol.
Volume 19 Numéro 2 Pages 387-400
Mots-Clés assemblages; biotic homogenization; bird communities; climate change; distribution models; ecosystem; environmental-change; fresh-water biodiversity; functional traits; habitat; no-analog communities; range shifts; species; species distribution; stream fish; traits
Résumé The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1354-1013 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 897
Lien permanent pour cet enregistrement
 

 
Auteur Cazelles, K.; Mouquet, N.; Mouillot, D.; Gravel, D.
Titre On the integration of biotic interaction and environmental constraints at the biogeographical scale Type Article scientifique
Année 2016 Publication Revue Abrégée Ecography
Volume 39 Numéro 10 Pages 921-931
Mots-Clés biodiversity; climate-change; cooccurrence; distributions; ecological communities; evolutionary; food webs; networks; niche; species distribution models
Résumé Biogeography is primarily concerned with the spatial distribution of biodiversity, including performing scenarios in a changing environment. The efforts deployed to develop species distribution models have resulted in predictive tools, but have mostly remained correlative and have largely ignored biotic interactions. Here we build upon the theory of island biogeography as a first approximation to the assembly dynamics of local communities embedded within a metacommunity context. We include all types of interactions and introduce environmental constraints on colonization and extinction dynamics. We develop a probabilistic framework based on Markov chains and derive probabilities for the realization of species assemblages, rather than single species occurrences. We consider the expected distribution of species richness under different types of ecological interactions. We also illustrate the potential of our framework by studying the interplay between different ecological requirements, interactions and the distribution of biodiversity along an environmental gradient. Our framework supports the idea that the future research in biogeography requires a coherent integration of several ecological concepts into a single theory in order to perform conceptual and methodological innovations, such as the switch from single-species distribution to community distribution.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1683
Lien permanent pour cet enregistrement
 

 
Auteur Christensen, V.; Coll, M.; Steenbeek, J.; Buszowski, J.; Chagaris, D.; Walters, C.J.
Titre Representing Variable Habitat Quality in a Spatial Food Web Model Type Article scientifique
Année 2014 Publication Revue Abrégée Ecosystems
Volume 17 Numéro 8 Pages 1397-1412
Mots-Clés Ecology; Ecopath; ecospace; Environmental Management; food web model; foraging capacity model; Geoecology/Natural Processes; habitat modeling; Hydrology/Water Resources; Plant Sciences; sampling; simulation model; species distribution model; Zoology
Résumé Why are marine species where they are? The scientific community is faced with an urgent need to understand aquatic ecosystem dynamics in the context of global change. This requires development of scientific tools with the capability to predict how biodiversity, natural resources, and ecosystem services will change in response to stressors such as climate change and further expansion of fishing. Species distribution models and ecosystem models are two methodologies that are being developed to further this understanding. To date, these methodologies offer limited capabilities to work jointly to produce integrated assessments that take both food web dynamics and spatial-temporal environmental variability into account. We here present a new habitat capacity model as an implementation of the spatial-temporal model Ecospace of the Ecopath with Ecosim approach. The new model offers the ability to drive foraging capacity of species from the cumulative impacts of multiple physical, oceanographic, and environmental factors such as depth, bottom type, temperature, salinity, oxygen concentrations, and so on. We use a simulation modeling procedure to evaluate sampling characteristics of the new habitat capacity model. This development bridges the gap between envelope environmental models and classic ecosystem food web models, progressing toward the ability to predict changes in marine ecosystems under scenarios of global change and explicitly taking food web direct and indirect interactions into account.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1432-9840, 1435-0629 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1196
Lien permanent pour cet enregistrement
 

 
Auteur CORMON, X.; LOOTS, C.; VAZ, S.; VERMARD, Y.; MARCHAL, P.
Titre Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) in the North Sea Type Article scientifique
Année 2014 Publication Revue Abrégée Ices Journal Of Marine Science
Volume 71 Numéro 6 Pages 1342-1355
Mots-Clés biotic interactions; competition; Generalized linear models; Hake; North sea; overlap; predator-prey relationship; saithe; species distribution modelling
Résumé Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) were investigated in the North Sea. Saithe is a well-established species in the North Sea, while occurrence of the less common hake has recently increased in the area. Spatial dynamics of these two species and their potential spatial interactions were explored using binomial generalized linear models (GLM) applied to the International Bottom Trawl Survey (IBTS) data from 1991 to 2012. Models included different types of variables: (i) abiotic variables including sediment types, temperature, and bathymetry; (ii) biotic variables including potential competitors and potential preys presence; and (iii) spatial variables. The models were reduced and used to predict and map probable habitats of saithe, hake but also, for the first time in the North Sea, the distribution of the spatial overlap between these two species. Changes in distribution patterns of these two species and of their overlap were also investigated by comparing species' presence and overlap probabilities predicted over an early (1991–1996) and a late period (2007–2012). The results show an increase in the probability over time of the overlap between saithe and hake along with an expansion towards the southwest and Scottish waters. These shifts follow trends observed in temperature data and might be indirectly induced by climate changes. Saithe, hake, and their overlap are positively influenced by potential preys and/or competitors, which confirms spatial co-occurrence of the species concerned and leads to the questions of predator–prey relationships and competition. Finally, the present study provides robust predictions concerning the spatial distribution of saithe, hake, and of their overlap in the North Sea, which may be of interest for fishery managers.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1054-3139 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1135
Lien permanent pour cet enregistrement