|   | 
Détails
   web
Enregistrements
Auteur Alix, M.; Blondeau-Bidet, E.; Grousset, E.; Shiranghi, A.; Vergnet, A.; Guinand, B.; Chatain, B.; Boulo, V.; Lignot, J.-H.
Titre Effects of fasting and re-alimentation on gill and intestinal morphology and indicators of osmoregulatory capacity in genetically selected sea bass (Dicentrarchus labrax) populations with contrasting tolerance to fasting Type Article scientifique
Année 2017 Publication Revue Abrégée Aquaculture
Volume 468 Numéro Pages 314-325
Mots-Clés bream sparus-auratus; dietary-sodium chloride; Enterocyte; Fasting; feed deprivation; fish; fresh-water; fundulus-heteroclitus; Gill ionocyte; Morphometry; Ontogeny; oreochromis-mossambicus; Osmoregulation; rainbow-trout; Re-alimentation; Salinity; Sea bass
Résumé Fasting and refeeding occur naturally in predators but this is largely ignored when dealing with farmed fish. Therefore,the effects of 3-week fasting and re-alimentation (2.5% of the individual body mass) were investigated using two genetically selected populations (F2 generation) of 250 g juvenile sea bass (Dicentrarchus labrax L.). Blood osmolarity, gill and intestinal morphology and expression of the sodium pump (Na+, K+-ATPase, NKA) were studied on two phenotypes showing different degrees of body mass loss during food deprivation: one group losing body mass rapidly during fasting (F+) and the other one limiting body mass loss during the same period (F-). Blood osmotic pressure significantly decreases due to re-alimentation in both groups, but this is compensated in the F+ group. In this group, gill ionocytes are smaller and less numerous, but a significantly higher NKA gene expression is noted in the gills in comparison to the F- individuals 48 and 72 h after re-alimentation, and also in the posterior intestine 72 h after re-alimentation. This most probably occurs to compensate for a higher salt intake during nutrient absorption in comparison to the F- group. Furthermore, refed F- fish absorb more lipids along the proximal anterior intestine, and take longer to digest than the F+ group, and show enterocyte vacuolization in the posterior intestine. Therefore, the two selected populations have different postprandial digestive strategies: the F- fish optimize feed efficiency first at the cost of optimal hydromineral adjustment, while the F+ group invests in osmoregulatory performance at the expense of digestive physiology. Statement of relevance: Our paper is highly relevant to the general field of commercial aquaculture. There is an increasing number of research articles dealing with fasting and refeeding in commercial fish and how to improve fish nutrition based oh these physiological data and genetic selection. (C) 2016 Elsevier B.V. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0044-8486 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1712
Lien permanent pour cet enregistrement
 

 
Auteur BLANCHETON, J.-P.; D'ORBCAS℡, E.R.O.Q.U.E.; LEMARIE, G.; BREUIL, G.; PETOCHI, T.; MARINO, G.; TRIPLET, S.; DUTTO, G.; FIVELSTAD, S.; COEURDACIER, J.-L.
Titre Effects of rearing density on sea bass (Dicentrarchus labrax) biological performance, blood parameters and disease resistance in a flow through system Type Article scientifique
Année 2010 Publication Revue Abrégée Aquatic Living Resources
Volume 23 Numéro 1 Pages 109-117
Mots-Clés Flow through system; Rearing density; Sea bass; Stress; Water quality
Résumé During 84 days, the effects of density on juvenile sea bass (Dicentrarchus labrax) (76 +/- 16 g) were studied in an experimental tank-based flow through system. Performance, stress response and resistance to virus infection were analysed under five stabilized rearing densities: 10, 20, 40, 70 and 100 kg m(-3). Water quality parameters (CO2, total ammonia nitrogen and O-2) were measured and maintained close to the recommended values for farmed sea bass by adjusting water renewal exchange. No significant differences were observed between density treatments, neither on stress response (cortisol) nor susceptibility to nodavirus. With regards to biological performances, the daily feed intake and specific growth rate were significantly lower in fish reared at the 100 kg m(-3) density. Results on the effects of density in sea bass reared in flow through (present study) and in recirculating aquaculture systems (RAS) (Sammouth et al. 2009) were compared as a contribution to the identification of density not affecting health and welfare in farmed sea bass.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0990-7440 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 59
Lien permanent pour cet enregistrement
 

 
Auteur Geay, F.; Culi, E.S.I.; Corporeau, C.; Boudry, P.; Dreano, Y.; Corcos, L.; Bodin, N.; Vandeputte, M.; Zambonino-Infante, J.L.; Mazurais, D.; Cahu, C.L.
Titre Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet Type Article scientifique
Année 2010 Publication Revue Abrégée Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology
Volume 156 Numéro 4 Pages 237-243
Mots-Clés biosynthesis; FADS2 expression and activity; Hufa; Sea bass (Dicentrarchus labrax)
Résumé Supplies of marine fish oils are limited, and continued growth in aquaculture production dictates that lipid substitutes in fish diets must be used without compromising fish health and product quality. In this study, the total substitution of a fish meal and fish oil by a blend of vegetable meals (corn, soybean, wheat and lupin) and linseed oil in the diet of European sea bass (Dicentrachus labrax) was investigated. Two groups of European sea bass were fed with fish diet (FD) or vegetable diet (VD) for 9 months. VD, totally deprived of eicosapentaenoate (EPA; 20:5n-3) and docosahexaenoate (DHA; 22:6n-3), revealed a nutritional deficiency and affected growth performance. Whilst VD induced a significant increase in fatty acid desaturase 2 (FADS2) and sterol binding regulatory element-binding protein 1 (SREBP-1) mRNA levels, the desaturation rate of [1-C-14]18:3n-3 into [1-C-14]18:4n-3, analysed in microsomal preparations using HPLC method, did not show an upregulation of FADS2 activities in liver and intestine of fish fed VD. Moreover Western-blot analysis did not revealed any significant difference of FADS2 protein amount between the two dietary groups. These data demonstrate that sea bass exhibits a desaturase (FADS2) activity whatever their diet, but a post-transcriptional regulation of fads2 RNA prevents an increase of enzyme in fish fed a HUFA-free diet. This led to a lower fish growth and poor muscle HUFA content.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1096-4959 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 75
Lien permanent pour cet enregistrement
 

 
Auteur Li, X.; Blancheton, J.-P.; Liu, Y.; Triplet, S.; Michaud, L.
Titre Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems Type Article scientifique
Année 2014 Publication Revue Abrégée Aquaculture International
Volume 22 Numéro 4 Pages 1263-1282
Mots-Clés culture-system; disinfection; european sea bass; Orp; ozonated; Ozone; performance; Ras; responses; rock lobster; salinity; seawater; sublethal exposure; trout oncorhynchus-mykiss; water-quality
Résumé The direct impact of oxidation-reduction potential (ORP) on fish welfare and water quality in marine recirculating aquaculture systems (RAS) is poorly documented. In this study, the effects of the fish size (S-1, S-2, S-3) and ORP level (normal, four successive levels) on the performance of European sea bass (Dicentrarchus labrax) were investigated. Three size fish were distributed into two RAS (RAS and RAS O-3). Ozone was injected into RAS O-3 to increase the ORP level. The ORP was stabilized to four successive levels: 260-300, 300-320, 320-350, and 300-320 mV in fish tanks during four periods (P1-4). At the last day of each period, the hematological parameters, plasma protein and mortality of sea bass were analyzed. Two-way ANOVA revealed that several hematological parameters, including pH, hematocrit, concentrations of oxygen, carbon dioxide, glucose (Glu), ionized calcium, kalium, and hemoglobin, were significantly influenced by the increased ORP levels over the experimental period. The alteration in blood Glu and plasma protein concentration showed that ORP around 300-320 mV started to stress sea bass. Once the ORP exceeded 320 mV in the tanks during the P-3 period, mortality occurred even when total residual oxidants/ozone-produced oxidants was only 0.03-0.05 mg L-1 in the fish tanks. At the same time, plasma protein decreased notably due to appetite depression. After the decrease in ORP during the P-4 period, mortality continued. In conclusion, the results strongly suggest that for European sea bass in RAS, the ORP should not exceed 320 mV in the tanks. Once ozonation damaged fish, the effect seemed to be irreversible. However, how ORP affected related hematological parameters still need the further investigations.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-6120 ISBN Médium
Région Expédition Conférence
Notes <p>ISI Document Delivery No.: AL4MD<br/>Times Cited: 1<br/>Cited Reference Count: 35<br/>Li, Xian Blancheton, Jean-Paul Liu, Ying Triplet, Sebastien Michaud, Luigi<br/>National Natural Science Foundation of China [41306152]; National Science and Technology Support Program [2011BAD13B04]<br/>The authors would thank all the participants from the Ifremer Palavas station: Cyrille Przybyla, Myriam Callier, and Thibault Geoffroy for their contribution to the experiment and analyses. This work was supported by the National Natural Science Foundation of China (Grant No. 41306152) and National Science and Technology Support Program (Grant No. 2011BAD13B04).<br/>Springer<br/>Dordrecht</p> Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1168
Lien permanent pour cet enregistrement
 

 
Auteur Marras, S.; Killen, S.S.; Claireaux, G.; Domenici, P.; McKenzie, D.J.
Titre Behavioural and kinematic components of the fast-start escape response in fish: individual variation and temporal repeatability Type Article scientifique
Année 2011 Publication Revue Abrégée J. Exp. Biol.
Volume 214 Numéro 18 Pages 3102-3110
Mots-Clés anaerobic performance; anaerobic swimming performance; body form; dicentrarchus-labrax; escape response; european sea bass; fast start; fish; gambusia-affinis; individual variation; locomotor performance; morphology; poecilia-reticulata; rainbow-trout; repeatability; sea bass; stereotype; swimming performance; teleost fish
Résumé Inter-individual variation in physiological performance traits, which is stable over time, can be of potential ecological and evolutionary significance. The fish escape response is interesting in this regard because it is a performance trait for which inter-individual variation may determine individual survival. The temporal stability of such variation is, however, largely unexplored. We quantified individual variation of various components of the escape response in a population of European sea bass (Dicentrarchus labrax), considering both non-locomotor (responsiveness and latency) and locomotor (speed, acceleration, turning rate, turning angle and distance travelled in a fixed time, D(esc)) variables. We assessed whether variation in performance was temporally stable and we searched for any trade-offs among the components of the response that might explain why the variation persisted in the population. The coefficient of variation was high for all components, from 23% for turning rate to 41% for D(esc), highlighting the non-stereotypic nature of the response. Individual performance for all variables was significantly repeatable over five sequential responses at 30min intervals, and also repeatable after a 30 day interval for most of the components. This indicates that the variation is intrinsic to the individuals, but there was no evidence for trade-offs amongst the components of the response, suggesting that, if trade-offs exist, they must be against other ecologically important behavioural or performance traits.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0949 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 458
Lien permanent pour cet enregistrement