|   | 
Détails
   web
Enregistrements
Auteur (up) Ben Abdelkrim, A.; Hattab, T.; Fakhfakh, H.; Belkadhi, M.S.; Gorsane, F.
Titre A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci Type Article scientifique
Année 2017 Publication Revue Abrégée Plos One
Volume 12 Numéro 10 Pages e0185724
Mots-Clés Animal migration; Genetic loci; Melons; Microsatellite loci; Pest control; phylogeography; Population genetics; Tunisia
Résumé Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2199
Lien permanent pour cet enregistrement
 

 
Auteur (up) Dalongeville, A.; Andrello, M.; Mouillot, D.; Albouy, C.; Manel, S.
Titre Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes Type Article scientifique
Année 2016 Publication Revue Abrégée J. Biogeogr.
Volume 43 Numéro 4 Pages 845-857
Mots-Clés atlantic bluefin tuna; bass dicentrarchus-labrax; climate-change; cod gadus-morhua; ecological traits; effective population-size; genetic diversity; gilthead sea; life-history traits; marine fishes; marine populations; Mediterranean Sea; microsatellite markers; microsatellites; mitochondrial; mitochondrial DNA; molecular markers; population genetics
Résumé AimWe set out to identify the determinants of the variation in genetic diversity among fish species and test whether multi-species genetic diversity is randomly distributed in space. LocationMediterranean Sea. MethodsWe collected genetic diversity data from 39 published studies on Mediterranean fishes (31 species) along with the spatial coordinates of the sampling sites. We focused on microsatellite heterozygosity (151 data points) and mitochondrial haplotype diversity (201 data points). We used linear regressions to link genetic diversity and 11 ecological traits. We also tested for spatial autocorrelation and trends in the residuals. ResultsAmong-species variation in microsatellite heterozygosity was explained by three ecological traits: vertical distribution, migration type and body length. Variation in mitochondrial haplotype diversity was also explained by vertical distribution and migration type, and by reproductive strategy (semelparity). However, vertical distribution and migration type showed opposite effects on microsatellites and mitochondrial diversity. After accounting for the effects of ecological traits, no spatial pattern was detected, except for one of the species considered. Main conclusionsEcological factors explain an important proportion of the among-species genetic diversity. These results suggest that life history strategies of the species influence the variation of microsatellite diversity indirectly through their effect on effective population size, while the spatial variations of genetic diversity seem to be too complex to be identified in our analysis. We found very different effects of traits on mitochondrial and nuclear DNA diversity, which can be explained by the specificities of mitochondrial DNA (absence of recombination, maternal inheritance and non-neutrality).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1627
Lien permanent pour cet enregistrement
 

 
Auteur (up) Dubois, M.; Rossi, V.; Ser-Giacomi, E.; Arnaud-Haond, S.; Lopez, C.; Hernandez-Garcia, E.
Titre Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems Type Article scientifique
Année 2016 Publication Global Ecology and Biogeography Revue Abrégée Glob. Ecol. Biogeogr.
Volume 25 Numéro 5 Pages 503-515
Mots-Clés coral-reef fish; dispersal; genetic-structure; Larval dispersal; local retention; local retention; marine connectivity; marine ecosystems; marine protected areas; mediterranean littoral fishes; Mediterranean Sea; metapopulation; pelagic larval duration; population dynamics; Population Genetics; protected-area design; sea; self-recruitment; sink dynamics; source
Résumé AimAssessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large-scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pertinent conservation planning. Based on a biophysical model for the entire Mediterranean Sea, this study takes an ecosystem approach to connectivity and provides a systematic characterization of broad-scale larval dispersal patterns. It builds on our knowledge of population dynamics and discusses the ecological and management implications. LocationThe semi-enclosed Mediterranean Sea and its marine ecosystems are used as a case study to investigate broad-scale connectivity patterns and to relate them to oceanography and population dynamics. MethodsA flow network is constructed by evenly subdividing the basin into sub-regions which are interconnected through the transport of larvae by ocean currents. It allows for the computation of various connectivity metrics required to evaluate larval retention and exchange. ResultsOur basin-scale model predicts that retention processes are weak in the open ocean while they are significant in the coastal ocean and are favoured along certain coastlines due to specific oceanographic features. Moreover, we show that wind-driven divergent (convergent, respectively) oceanic regions are systematically characterized by larval sources (sinks, respectively). Finally, although these connectivity metrics have often been studied separately in the literature, we demonstrate they are interrelated under particular conditions. Their integrated analysis facilitates the appraisal of population dynamics, informing both genetic and demographic connectivities. Main conclusionsThis modelling framework helps ecologists and geneticists to formulate improved hypotheses of population structures and gene flow patterns and to design their sampling strategy accordingly. It is also useful in the implementation and assessment of future protection strategies, such as coastal and offshore marine reserves, by accounting for large-scale dispersal patterns, a missing component of current ecosystem management.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1466-822x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1655
Lien permanent pour cet enregistrement
 

 
Auteur (up) KIVELA, M.; ARNAUD-HAOND, S.; SARAMAKI, J.
Titre EDENetworks: A user-friendly software to build and analyse networks in biogeography, ecology and population genetics Type Article scientifique
Année 2015 Publication Revue Abrégée Molecular Ecology Resources
Volume 15 Numéro 1 Pages 117-122
Mots-Clés Biogeography; biological communities; graph theory; microbial ecology; network analysis; population genetics
Résumé The recent application of graph-based network theory analysis to biogeography, community ecology and population genetics has created a need for user-friendly software, which would allow a wider accessibility to and adaptation of these methods. EDENetworks aims to fill this void by providing an easy-to-use interface for the whole analysis pipeline of ecological and evolutionary networks starting from matrices of species distributions, genotypes, bacterial OTUs or populations characterized genetically. The user can choose between several different ecological distance metrics, such as Bray-Curtis or Sorensen distance, or population genetic metrics such as FST or Goldstein distances, to turn the raw data into a distance/dissimilarity matrix. This matrix is then transformed into a network by manual or automatic thresholding based on percolation theory or by building the minimum spanning tree. The networks can be visualized along with auxiliary data and analysed with various metrics such as degree, clustering coefficient, assortativity and betweenness centrality. The statistical significance of the results can be estimated either by resampling the original biological data or by null models based on permutations of the data.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1755-098x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1119
Lien permanent pour cet enregistrement
 

 
Auteur (up) Pirog, A.; Jaquemet, S.; Blaison, A.; Soria, M.; Magalon, H.
Titre Isolation and characterization of eight microsatellite loci from Galeocerdo cuvier (tiger shark) and cross-amplification in Carcharhinus leucas, Carcharhinus brevipinna, Carcharhinus plumbeus and Sphyrna lewini Type Article scientifique
Année 2016 Publication Revue Abrégée PeerJ
Volume 4 Numéro Pages e2041
Mots-Clés age; bull; Carcharhiniform; Control region; growth; hawaiian waters; markers; microsatellites; movements; patterns; Population Genetics; software; western north-atlantic
Résumé The tiger shark Galeocerdo cuvier (Carcharhinidae) is a large elasmobranch suspected to have, as other apex predators, a keystone function in marine ecosystems and is currently considered Near Threatened (Red list IUCN). Knowledge on its ecology, which is crucial to design proper conservation and management plans, is very scarce. Here we describe the isolation of eight polymorphic microsatellite loci using 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Their characteristics were tested on a population of tiger shark (n = 101) from Reunion Island (South-Western Indian Ocean). All loci were polymorphic with a number of alleles ranging from two to eight. No null alleles were detected and no linkage disequilibrium was detected after Bonferroni correction. Observed and expected heterozygosities ranged from 0.03 to 0.76 and from 0.03 to 0.77, respectively. No locus deviated from Hardy-Weinberg equilibrium and the global F-IS of the population was of 0.04(NS). Some of the eight loci developed here successfully cross-amplified in the bull shark Carcharhinus leucas (one locus), the spinner shark Carcharhinus brevi pi n n a (four loci), the sandbar shark Carcharhinus plumbeus (five loci) and the scalloped hammerhead shark Sphyrna lewini (two loci). We also designed primers to amplify and sequence a mitochondrial marker, the control region. We sequenced 862 bp and found a low genetic diversity, with four polymorphic sites, a haplotype diversity of 0.15 and a nucleotide diversity of 2 x 10(-4).
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2167-8359 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1651
Lien permanent pour cet enregistrement