|   | 
Détails
   web
Enregistrements
Auteur Bailleul, D.; Ollier, S.; Lecomte, J.
Titre Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops Type Article scientifique
Année 2016 Publication Revue Abrégée PLoS One
Volume 11 Numéro 6 Pages e0158403
Mots-Clés canola brassica-napus; flow; herbicide resistance; long-distance dispersal; persistence; plant; pollen-dispersal; seed; volunteer canola; western canada
Résumé Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km(2). We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1646
Lien permanent pour cet enregistrement
 

 
Auteur Kaplan, D.M.; Cuif, M.; Fauvelot, C.; Vigliola, L.; Nguyen-Huu, T.; Tiavouane, J.; Lett, C.
Titre Uncertainty in empirical estimates of marine larval connectivity Type Article scientifique
Année 2017 Publication Revue Abrégée ICES J. Mar. Sci.
Volume 74 Numéro 6 Pages 1723-1734
Mots-Clés connectivity; dispersal; Larval dispersal; management; model; parentage analysis; persistence; population; protected areas; Reef fish; reserves; self-recruitment; Transgenerational marking
Résumé Despite major advances in our capacity to measure marine larval connectivity (i.e. the pattern of transport of marine larvae from spawning to settlement sites) and the importance of these measurements for ecological and management questions, uncertainty in experimental estimates of marine larval connectivity has been given little attention. We review potential uncertainty sources in empirical larval connectivity studies and develop Bayesian statistical methods for estimating these uncertainties based on standard techniques in the mark-recapture and genetics literature. These methods are implemented in an existing R package for working with connectivity data, ConnMatTools, and applied to a number of published connectivity estimates. We find that the small sample size of collected settlers at destination sites is a dominant source of uncertainty in connectivity estimates in many published results. For example, widths of 95% CIs for relative connectivity, the value of which is necessarily between 0 and 1, exceeded 0.5 for many published connectivity results, complicating using individual results to conclude that marine populations are relatively closed or open. This “small sample size” uncertainty is significant even for studies with near-exhaustive sampling of spawners and settlers. Though largely ignored in the literature, the magnitude of this uncertainty is straightforward to assess. Better accountability of this and other uncertainties is needed in the future so that marine larval connectivity studies can fulfill their promises of providing important ecological insights and informing management questions (e.g. related to marine protected area network design, and stock structure of exploited organisms). In addition to using the statistical methods developed here, future studies should consistently evaluate and report a small number of critical factors, such as the exhaustivity of spawner and settler sampling, and the mating structure of target species in genetic studies.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1054-3139 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2170
Lien permanent pour cet enregistrement