|   | 
Détails
   web
Enregistrements
Auteur Durand, J.D.; Shen, K.N.; Chen, W.J.; Jamandre, B.W.; Blel, H.; Diop, K.; Nirchio, M.; de Leon, F.J.G.; Whitfield, A.K.; Chang, C.W.; Borsa, P.
Titre Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): Molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy Type Article scientifique
Année 2012 Publication Revue Abrégée Mol. Phylogenet. Evol.
Volume 64 Numéro 1 Pages 73-92
Mots-Clés 16S rRNA; Cryptic species; Cytochrome b; Cytochrome oxidase I; Phylogeny; cephalus; divergence; fishes; gray mullets; mitochondrial-dna sequence; mtdna segments; pcr-rflp-analysis; ribosomal-rna genes; species mugilidae; striped mullet
Résumé The family Mugilidae comprises mainly coastal marine species that a:e widely distributed in all tropical, subtropical and temperate seas. Mugilid species are generally considered to be ecologically important and they are a major food resource for human populations in certain parts of the world. The taxonomy and systematics of the Mugilidae are still much debated and based primarily on morphological characters. In this study, we provide the first comprehensive molecular systematic account of the Mugilidae using phylogenetic analyses of nucleotide sequence variation at three mitochondrial loci (16S rRNA, cytochrome oxidase 1, and cytochrome b) for 257 individuals from 55 currently recognized species. The study covers all 20 mugilid genera currently recognized as being valid. The family comprises seven major lineages that radiated early on from the ancestor to all current forms. All genera that were represented by two species or more, except Cestraeus, turned out to be paraphyletic or polyphyletic. Thus, the present phylogenetic results generally disagree with the current taxonomy at the genus level and imply that the anatomical characters used for the systematics of the Mugilidae may be poorly informative phylogenetically. The present results should provide a sound basis for a taxonomic revision of the mugilid genera. A proportion of the species with large distribution ranges (including Moolgarda seheli, Mugil cephalus and M. curema) appear to consist of cryptic species, thus warranting further taxonomic and genetic work at the infra-generic level. (c) 2012 Elsevier Inc. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1055-7903 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 880
Lien permanent pour cet enregistrement
 

 
Auteur Jensen, M.P.; Dalleau, M.; Gaspar, P.; Lalire, M.; Jean, C.; Ciccione, S.; Mortimer, J.A.; Quillard, M.; Taquet, C.; Wamukota, A.; Leroux, G.; Bourjea, J.
Titre Seascape Genetics and the Spatial Ecology of Juvenile Green Turtles Type Article scientifique
Année 2020 Publication Revue Abrégée Genes
Volume 11 Numéro 3 Pages 278
Mots-Clés Chelonia mydas; connectivity; drifting simulation; green turtle; juvenile; mixed stock analysis; mtDNA; Southwest Indian Ocean
Résumé Understanding how ocean currents impact the distribution and connectivity of marine species, provides vital information for the effective conservation management of migratory marine animals. Here, we used a combination of molecular genetics and ocean drift simulations to investigate the spatial ecology of juvenile green turtle (Chelonia mydas) developmental habitats, and assess the role of ocean currents in driving the dispersal of green turtle hatchlings. We analyzed mitochondrial (mt)DNA sequenced from 358 juvenile green turtles, and from eight developmental areas located throughout the Southwest Indian Ocean (SWIO). A mixed stock analysis (MSA) was applied to estimate the level of connectivity between developmental sites and published genetic data from 38 known genetic stocks. The MSA showed that the juvenile turtles at all sites originated almost exclusively from the three known SWIO stocks, with a clear shift in stock contributions between sites in the South and Central Areas. The results from the genetic analysis could largely be explained by regional current patterns, as shown by the results of passive numerical drift simulations linking breeding sites to developmental areas utilized by juvenile green turtles. Integrating genetic and oceanographic data helps researchers to better understand how marine species interact with ocean currents at different stages of their lifecycle, and provides the scientific basis for effective conservation management.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes WOS:000529189000042 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2721
Lien permanent pour cet enregistrement
 

 
Auteur Jensen, M.P.; FitzSimmons, N.N.; Bourjea, J.; Hamabata, T.; Reece, J.; Dutton, P.H.
Titre The evolutionary history and global phylogeography of the green turtle (Chelonia mydas) Type Article scientifique
Année 2019 Publication Revue Abrégée Journal of Biogeography
Volume 46 Numéro 5 Pages 860-870
Mots-Clés marine; mtDNA; conservation units; genetic hotspots; genetic structure; sea turtle
Résumé Aim To examine the genetic structure and global phylogeography of the endangered green sea turtle, Chelonia mydas, in light of past climatic events and current conservation needs. Location Tropical and subtropical beaches around the world. Methods We analysed 386 base pairs of the mitochondrial (mt)DNA control region of 4,878 individual nesting green turtle samples from 127 rookeries globally. We used phylogeographic analysis to assess how demographic history, dispersal and barriers to gene flow have led to the current distribution of mtDNA lineages. Results We identified 11 divergent lineages that were tied to specific biogeographical regions. The phylogenetic analyses revealed an ancient origin for the species centred in the Indo-Pacific and more recent colonization of the Central/Eastern Pacific as well as the Atlantic Basin. Overall the phylogeographic structure was strong but with a clear pattern of regional connectivity among rookeries. A Large genetic separation was found where there were obvious barriers to dispersal such as between the Atlantic and Pacific oceans and across the Pacific Ocean, as well as less obvious barriers to dispersal. Admixture of mtDNA haplotype lineages was detected at latitudinal extremes across the Indian Ocean and western Pacific Ocean resulting in these areas being nucleotide diversity hotspots. The highest regional genetic diversity and high endemic richness was observed in the SW Pacific, NW Pacific, SW Indian and NW Indian oceans. Main conclusions Past climatic fluctuations greatly affected the distribution of genetic diversity in the highly migratory green turtle. Our data suggest that past climatic events influenced local populations in different ways and the species appears to have survived the last glaciations in multiple glacial refugia.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1365-2699 ISBN Médium
Région Expédition Conférence
Notes WOS:000471344900003 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2608
Lien permanent pour cet enregistrement
 

 
Auteur Putman, N.F.; Abreu-Grobois, F.A.; Broderick, A.C.; Ciofi, C.; Formia, A.; Godley, B.J.; Stroud, S.; Pelembe, T.; Verley, P.; Williams, N.
Titre Numerical dispersal simulations and genetics help explain the origin of hawksbill sea turtles in Ascension Island Type Article scientifique
Année 2014 Publication Revue Abrégée Journal of Experimental Marine Biology and Ecology
Volume 450 Numéro Special Issue Pages 98-108
Mots-Clés dispersal; mtDNA; ocean circulation model; Sea turtle
Résumé Long-distance dispersal and ontogenetic shifts in habitat use are characteristic of numerous marine species and have important ecological, evolutionary, and management implications. These processes, however, are often challenging to study due to the vast areas involved. We used genetic markers and simulations of physical transport within an ocean circulation model to gain understanding into the origin ofjuvenile hawksbill sea turtles (Eretmochelys imbricata) found at Ascension Island, a foraging ground that is thousands of kilometers from known nesting beaches. Regional origin of genetic markers suggests that turtles are from Western Atlantic (86%) and Eastern Atlantic (14%) rookeries. In contrast, numerical simulations of transport by ocean currents suggest that passive dispersal from the western sources would be negligible and instead would primarily be from the East, involving rookeries along Western Africa (i.e., Principe Island) and, potentially, from as far as the Indian Ocean (e.g., Mayotte and the Seychelles). Given that genetic analysis identified the presence of a haplotype endemic to Brazilian hawksbill rookeries at Ascension, we examined the possible role of swimming behavior by juvenile hawksbills from NE Brazil on their current-borne transport to Ascension Island by performing numerical experiments in which swimming behavior was simulated for virtual particles (simulated turtles). We found that oriented swimming substantially influenced the distribution of particles, greatly altering the proportion of particles dispersing into the North Atlantic and South Atlantic. Assigning location-dependent orientation behavior to particles allowed them to reach Ascension Island, remain in favorable temperatures, encounter productive foraging areas, and return to the vicinity of their natal site. The age at first arrival to Ascension (4.5-5.5 years) of these particles corresponded well to estimates of hawksbill age based on their size. Our findings suggest that ocean currents and swimming behavior play an important role in the oceanic ecology of sea turtles and other marine animals.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0022-0981 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 333
Lien permanent pour cet enregistrement