|   | 
Détails
   web
Enregistrements
Auteur Bender, M.G.; Leprieur, F.; Mouillot, D.; Kulbicki, M.; Parravicini, V.; Pie, M.R.; Barneche, D.R.; Oliveira-Santos, L.G.R.; Floeter, S.R.
Titre Isolation drives taxonomic and functional nestedness in tropical reef fish faunas Type Article scientifique
Année 2017 Publication Revue Abrégée Ecography
Volume 40 Numéro 3 Pages 425-435
Mots-Clés assembly rules; biodiversity; communities; coral-reef; diversity; global patterns; islands; null model analysis; species richness; traits
Résumé Taxonomic nestedness, the degree to which the taxonomic composition of species-poor assemblages represents a subset of richer sites, commonly occurs in habitat fragments and islands differing in size and isolation from a source pool. However, species are not ecologically equivalent and the extent to which nestedness is observed in terms of functional trait composition of assemblages still remains poorly known. Here, using an extensive database on the functional traits and the distributions of 6316 tropical reef fish species across 169 sites, we assessed the levels of taxonomical vs functional nestedness of reef fish assemblages at the global scale. Functional nestedness was considerably more common than taxonomic nestedness, and generally associated with geographical isolation, where nested subsets are gradually more isolated from surrounding reef areas and from the center of biodiversity. Because a nested pattern in functional composition implies that certain combinations of traits may be represented by few species, we identified these groups of low redundancy that include large herbivore-detritivores and omnivores, small piscivores, and macro-algal herbivores. The identified patterns of nestedness may be an outcome of the interaction between species dispersal capabilities, resource requirements, and gradients of isolation among habitats. The importance of isolation in generating the observed pattern of functional nestedness within biogeographic regions may indicate that disturbance in depauperate and isolated sites can have disproportionate effects on the functional structure of their reef fish assemblages.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2107
Lien permanent pour cet enregistrement
 

 
Auteur Meddeb, M.; Niquil, N.; Grami, B.; Mejri, K.; Haraldsson, M.; Chaalali, A.; Pringault, O.; Hlaili, A.S.
Titre A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov chain linear inverse method and ecological network analysis Type Article scientifique
Année 2019 Publication Revue Abrégée Ecol. Indic.
Volume 104 Numéro Pages 67-85
Mots-Clés Bacterial multivorous food web; biogenic carbon; Coastal waters; continental-shelf; Ecology; ecosystem attributes; flow networks; Food web modeling; grazing impact; gulf; mediterranean sea; model analysis; Network analysis; Seasonal variations; seasonal-dynamics; trophic network; Trophic structure
Résumé Plankton food webs (PFW) typology is based on different categories of functioning, according to the dominant processes and the role played by heterotrophic bacteria, small vs large phytoplankton, and small vs large zooplankton. Investigating the structure and the function of planktonic food webs in two SW Mediterranean waters (inshore and marine sites) at four seasons, using inverse (LIM-MCMC) and ecological network (ENA) analyses, we identified a new type of food web, called the “bacterial multivorous food web”. This food web adds to the conventional trophic continuum as previously reported. The “bacterial multivorous food web” present in winter showed the lowest primary production among seasons, but highest bacterial production. Several food web ratios characterized this new typology e.g. picophytoplankton net primary production to total primary production varied from 0.20 to 0.28; bacterial to primary production ratio is higher than values reported in global scale (congruent to 1); bacterial net production to the potential protozoan prey net production was high (>0.2). In this special food web, carbon was mostly recycled, with a moderate fraction channeled to deep waters, which lead to a higher retention of carbon inside the ecosystem. This winter PFW also seemed to be the most organized, specialized, stable and mature, as related to common interpretations of ENA. The spring was characterized by herbivorous food web, with highest activity coinciding with low stability. Although less usual, the herbivorous pathway was also observed during summer, in inshore waters. The autumn food webs, which functioned as multivorous or microbial food webs, appeared to be stable and mature. Finally, our study demonstrates the usefulness of food web models derived ratios combined with ecological network analysis indices to conduct evaluation of the structure and functioning of ecosystems and potentially to support management decisions in marine environment.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1470-160x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2596
Lien permanent pour cet enregistrement