|   | 
Détails
   web
Enregistrements
Auteur (up) Annasawmy, P.; Ternon, J.-F.; Cotel, P.; Cherel, Y.; Romanov, E.; Roudaut, G.; Lebourges-Dhaussy, A.; Menard, F.; Marsac, F.
Titre Micronekton distributions and assemblages at two shallow seamounts of the south-western Indian Ocean: Insights from acoustics and mesopelagic trawl data Type Article scientifique
Année 2019 Publication Revue Abrégée Prog. Oceanogr.
Volume 178 Numéro Pages 102161
Mots-Clés Acoustics; deep-scattering layer; diel migration; fish aggregations; mesoscale features; Micronekton; mozambique channel; myctophid fishes; pelagic communities; Seamount; Seamount-associated fauna; South-western Indian Ocean; species identification; target strength; vertical-distribution
Résumé Micronekton distributions and assemblages were investigated at two shallow seamounts of the south-western Indian Ocean using a combination of trawl data and a multi-frequency acoustic visualisation technique. La Pa rouse seamount (summit depth similar to 60 m) is located on the outskirts of the oligotrophic Indian South Subtropical Gyre (ISSG) province with weak mesoscale activities and low primary productivity all year round. The “MAD-Ridge” seamount (thus termed in this study; similar to 240 m) is located in the productive East African Coastal (EAFR) province with high mesoscale activities to the south of Madagascar. Higher micronekton species richness was recorded at MAD-Ridge compared to La Perouse. Resulting productivity at MAD-Ridge seamount was likely due to the action of mesoscale eddies advecting productivity and larvae from the Madagascar shelf rather than local dynamic processes such as Taylor column formation. Mean micronekton abundance/biomass, as estimated from mesopelagic trawl catches, were lower over the summit compared to the vicinity of the seamounts, due to net selectivity and catchability and depth gradient on micronekton assemblages. Mean acoustic densities in the night shallow scattering layer (SSL: 10-200 m) over the summit were not significantly different compared to the vicinity (within 14 nautical miles) of MAD-Ridge. At La Perouse and MAD-Ridge, the night and day SSL were dominated by common diel vertically migrant and non-migrant micronekton species respectively. While seamount-associated mesopelagic fishes such as Diaphus suborbitalis (La Perouse and MAD-Ridge) and Benthosema fibula= performed diel vertical migrations (DVM) along the seamounts' flanks, seamount-resident benthopelagic fishes, including Cookeolus japonicus (MAD-Ridge), were aggregated over MAD-Ridge summit. Before sunrise, mid-water migrants initiated their vertical migration from the intermediate to the deep scattering layer (DSL, La Perouse: 500-650 m; MAD-Ridge: 400-700 m) or deeper. During sunrise, the other taxa contributing to the night SSL exhibited a series of vertical migration events from the surface to the DSL or deeper until all migrants have reached the DSL before daytime. Possible mechanisms leading to the observed patterns in micronekton vertical and horizontal distributions are discussed. This study contributes to a better understanding of how seamounts influence the DVM, horizontal distribution and community composition of micronekton and seamount-associated/resident species at two poorly studied shallow topographic features in the south-western Indian Ocean.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0079-6611 ISBN Médium
Région Expédition Conférence
Notes WOS:000496861900013 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2666
Lien permanent pour cet enregistrement
 

 
Auteur (up) Annasawmy, P.; Ternon, J.F.; Marsac, F.; Cherel, Y.; Behagle, N.; Roudaut, G.; Lebourges-Dhaussy, A.; Demarcq, H.; Moloney, C.L.; Jaquemet, S.; Menard, F.
Titre Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes Type Article scientifique
Année 2018 Publication Revue Abrégée Deep-Sea Res. Part I-Oceanogr. Res. Pap.
Volume 138 Numéro Pages 85-97
Mots-Clés Diel vertical migration; East African Coastal province; equatorial atlantic; feeding ecology; Indian South Subtropical Gyre; large pelagic fishes; mesopelagic fishes; mesoscale features; Micronekton; mozambique channel; myctophid fishes; north-atlantic ocean; respiratory carbon; Trophic level; vertical-distribution
Résumé Spatial distribution, community composition and trophic roles of micronekton (crustaceans, fishes and squids) were investigated in the Indian South Subtropical Gyre (ISSG) province and the East African Coastal province (EAFR), by combining acoustic surveys, mid-water trawls and stable isotope analyses from scientific cruises conducted in 2009 and 2010. Mesopelagic micronekton performed diel vertical migrations in both provinces, from deep (400-740 m) to surface (0-200 m) layers at dusk and in the opposite direction at dawn, with some species migrating below 740 m. The EAFR province was more dynamic than the oligotrophic ISSG province, with enhanced eddy activity and enhanced yearly productivity. The active enrichment mechanisms in the EAFR, in terms of available primary production, led to high micronekton acoustic density (as a proxy of micronekton abundance) and large micronekton weight and abundance estimates from trawl data. Particulate organic matter in the EAFR exhibited greater enrichment in C-13 and N-15 compared to the ISSG and, consequently, tissues of selected micronekton organisms in the EAFR were more enriched in N-15 (higher delta N-15 values). In both provinces, micronekton encompassed a wide range of isotopic niches, with large overlaps between species. Micronekton and swordfish in the EAFR had an overlapping range of delta N-15 values, contrasting with the ISSG province where swordfish were two trophic levels higher than the sampled micronekton. Our results provide some evidence that the combined action of riverine input and the dynamics of eddies might influence productivity in the EAFR, and hence the abundance of micronekton and the enrichment of tissues in N-15, compared to the oligotrophic ISSG province.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-0637 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2431
Lien permanent pour cet enregistrement
 

 
Auteur (up) Aumont, O.; Maury, O.; Lefort, S.; Bopp, L.
Titre Evaluating the Potential Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine Biogeochemistry Type Article scientifique
Année 2018 Publication Revue Abrégée Global Biogeochemical Cycles
Volume 32 Numéro 11 Pages 1622-1643
Mots-Clés ecosystem; ocean; biogeochemistry; export; carbon cycle; diurnal vertical migration
Résumé Diurnal vertical migration (DVM) of marine organisms is an ubiquitous phenomenon in the ocean that generates an active vertical transport of organic matter. However, the magnitude and consequences of this flux are largely unknown and are currently overlooked in ocean biogeochemical models. Here we present a global model of pelagic ecosystems based on the ocean biogeochemical model NEMO-PISCES that is fully coupled to the upper trophic levels model Apex Predators ECOSystem Model, which includes an explicit description of migrating organisms. Evaluation of the model behavior proved to be challenging due to the scarcity of suitable observations. Nevertheless, the model appears to be able to simulate approximately both the migration depth and the relative biomass of migrating organisms. About one third of the epipelagic biomass is predicted to perform DVM. The flux of carbon driven by DVM is estimated to be 1.05 ± 0.15 PgC/year, about 18% of the passive flux of carbon due to sinking particles at 150 m. Comparison with local studies suggests that the model captures the correct magnitude of this flux. Oxygen is decreased in the mesopelagic domain by about 5 mmol?m?3 relative to simulations of an ocean without DVM. Our study concludes that DVM drives a significant and very efficient flux of carbon to the mesopelagic domain, similar in magnitude to the transport of DOC. Relative to a model run without DVM, the consequences of this flux seem to be quite modest on oxygen, due to compensating effects between DVM and passive fluxes.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0886-6236 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2458
Lien permanent pour cet enregistrement
 

 
Auteur (up) Ben Abdelkrim, A.; Hattab, T.; Fakhfakh, H.; Belkadhi, M.S.; Gorsane, F.
Titre A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci Type Article scientifique
Année 2017 Publication Revue Abrégée Plos One
Volume 12 Numéro 10 Pages e0185724
Mots-Clés Animal migration; Genetic loci; Melons; Microsatellite loci; Pest control; phylogeography; Population genetics; Tunisia
Résumé Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1932-6203 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2199
Lien permanent pour cet enregistrement
 

 
Auteur (up) Bonnin, L.; Robbins, W.D.; Boussarie, G.; Kiszka, J.J.; Dagorn, L.; Mouillot, D.; Vigliola, L.
Titre Repeated long-range migrations of adult males in a common Indo-Pacific reef shark Type Article scientifique
Année 2019 Publication Revue Abrégée Coral Reefs
Volume Numéro Pages
Mots-Clés carcharhinus-amblyrhynchos; carcharias; fidelity; Male-biased dispersal; Migration; movements; New Caledonia; patterns; philopatry; population; Reef shark; residency; site; Telemetry; white sharks
Résumé The grey reef shark, Carcharhinus amblyrhynchos, is one of the most abundant coral reef sharks throughout the Indo-Pacific. However, this species has been critically impacted across its range, with well-documented population declines of > 90% attributed to human activities. A key knowledge gap in the successful implementation of grey reef shark conservation plans is the understanding of large-scale movement patterns, along with the associated biological and ecological drivers. To address this shortfall, we acoustically monitored 147 adult and juvenile grey reef sharks of all sexes for more than 2 yr across the New Caledonian archipelago, West Pacific. Here, we document multiple adult males undertaking return journeys of up to nearly 700 km in consecutive years. This constitutes the first evidence of repeated long-range migrations for this species. Although only a limited number of adult males were definitively tracked undertaking migrations, similar timing in changes in the detection patterns of a further 13 animals, mostly adult males, suggests this behavior may be more common than previously thought. The paucity of evidence for juvenile migrations and timing of adult movements suggest that mating is the motivation behind these migrations. Our results have important implications for management, given the potential of mature individuals to recurrently travel outside managed or protected areas. Future management of this species clearly needs to consider the importance of large-scale migratory behaviors when developing management plans.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0722-4028 ISBN Médium
Région Expédition Conférence
Notes WOS:000496832900001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2670
Lien permanent pour cet enregistrement