|   | 
Détails
   web
Enregistrements
Auteur Carvalho, P.G.; Jupiter, S.D.; Januchowski-Hartley, F.A.; Goetze, J.; Claudet, J.; Weeks, R.; Humphries, A.; White, C.
Titre Optimized fishing through periodically harvested closures Type (up) Article scientifique
Année 2019 Publication Revue Abrégée J. Appl. Ecol.
Volume 56 Numéro 8 Pages 1927-1936
Mots-Clés bioeconomic model; conservation; coral-reef fishes; fish behaviour; fisheries management; management; marine protected areas; marine reserves; new-zealand; outcomes; periodically harvested closures; population dynamics; vulnerability; yield
Résumé Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to <= 18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0021-8901 ISBN Médium
Région Expédition Conférence
Notes WOS:000478601300007 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2619
Lien permanent pour cet enregistrement
 

 
Auteur Ban, N.C.; Maxwell, S.M.; Dunn, D.C.; Hobday, A.J.; Bax, N.J.; Ardron, J.; Gjerde, K.M.; Game, E.T.; Devillers, R.; Kaplan, D.M.; Dunstan, P.K.; Halpin, P.N.; Pressey, R.L.
Titre Better integration of sectoral planning and management approaches for the interlinked ecology of the open oceans Type (up) Article scientifique
Année 2014 Publication Revue Abrégée Marine Policy
Volume Numéro Pages
Mots-Clés Areas beyond national jurisdiction; Benthic-pelagic interlinkages; High seas; marine conservation; Marine Protected Areas; sustainable fisheries
Résumé Open oceans are one of the least protected, least studied and most inadequately managed ecosystems on Earth. Three themes were investigated that differentiate the open ocean (areas beyond national jurisdiction and deep area within exclusive economic zones) from other realms and must be considered when developing planning and management options: ecosystem interactions, especially between benthic and pelagic systems; potential effects of human activities in open oceans on ecological linkages; and policy context and options. A number of key ecological factors differentiate open oceans from coastal systems for planners and managers: (1) many species are widely distributed and, especially for those at higher trophic levels, wide ranging; (2) the sizes and boundaries of biogeographical domains (patterns of co-occurrence of species, habitats and ecosystem processes) vary significantly by depth; (3) habitat types exhibit a wide range of stabilities, from ephemeral (e.g., surface frontal systems) to hyper-stable (e.g., deep sea); and (4) vertical and horizontal linkages are prevalent. Together, these ecological attributes point to interconnectedness between open ocean habitats across large spatial scales. Indeed, human activities – especially fishing, shipping, and potentially deep-sea mining and oil and gas extraction – have effects far beyond the parts of the ocean in which they operate. While managing open oceans in an integrated fashion will be challenging, the ecological characteristics of the system demand it. A promising avenue forward is to integrate aspects of marine spatial planning (MSP), systematic conservation planning (SCP), and adaptive management. These three approaches to planning and management need to be integrated to meet the unique needs of open ocean systems, with MSP providing the means to meet a diversity of stakeholder needs, SCP providing the structured process to determine and prioritise those needs and appropriate responses, and adaptive management providing rigorous monitoring and evaluation to determine whether actions or their modifications meet both ecological and defined stakeholder needs. The flexibility of MSP will be enhanced by the systematic approach of SCP, while the rigorous monitoring of adaptive management will enable continued improvement as new information becomes available and further experience is gained.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0308-597x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 317
Lien permanent pour cet enregistrement
 

 
Auteur Coll, M.; Steenbeek, J.; Lasram, F.B.; Mouillot, D.; Cury, P.
Titre 'Low-hanging fruit' for conservation of marine vertebrate species at risk in the Mediterranean Sea Type (up) Article scientifique
Année 2015 Publication Frontiers in Microbiology Revue Abrégée
Volume 24 Numéro 2 Pages 226-239
Mots-Clés Conservation priorities; cumulative threats; IUCN diversities; marine biodiversity; Marine Protected Areas; Mediterranean Sea
Résumé AimConservation priorities need to take the feasibility of protection measures into account. In times of economic pressure it is essential to identify the low-hanging fruit' for conservation: areas where human impacts are lower and biological diversity is still high, and thus conservation is more feasible. LocationWe used the Mediterranean large marine ecosystem (LME) as a case study to identify the overlapping areas of low threats and high diversity of vertebrate species at risk. MethodsThis LME is the first in the world to have a complete regional IUCN Red List assessment of the native marine fish. We augmented these data with distributions of marine mammals, marine turtles and seabirds at risk, and we calculated the spatial distributions of species at risk (IUCN densities). Using cumulative threats we identified priority areas for conservation of species at risk' (PACS), where IUCN diversities are high and threats are low. We assessed whether IUCN diversities and PACS were spatially congruent among taxa and we quantified whether PACS corresponded to current and proposed protected areas. ResultsIUCN densities and PACS were not highly correlated spatially among taxa. Continental shelves and deep-sea slopes of the Alboran Sea, western Mediterranean and Tunisian Plateau/Gulf of Sidra are identified as relevant for fish species at risk. The eastern side of the western Mediterranean and the Adriatic Sea are identified as most relevant for endemic fish, and shelf and open sea areas distributed through the LME are most important for marine mammals and turtles at risk, while specific locations of the western Mediterranean Sea and the Aegean and Levantine seas are highlighted for seabirds. Main conclusionsLarge parts of the areas of PACS fell outside current or proposed frameworks to be prioritized for conservation. PACS may be suitable candidates for contributing to the 10% protection target for the Mediterranean Sea by 2020.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1102
Lien permanent pour cet enregistrement
 

 
Auteur Eduardo Nole, L.; Frédou, T.; Souza Lira, A.; Padovani Ferreira, B.; Bertrand, A.; Ménard, F.; Lucena Frédou, F.
Titre Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf Type (up) Article scientifique
Année 2018 Publication Revue Abrégée Continental Shelf Research
Volume 166 Numéro Pages 108-118
Mots-Clés Demersal fish assemblage; Fish assemblage structure; Habitat composition; Marine Protected Areas; Northeast Brazilian coast; Underwater footages
Résumé Knowledge of the spatial distribution of fish assemblages biodiversity and structure is essential for prioritizing areas of conservation. Here we describe the biodiversity and community structure of demersal fish assemblages and their habitat along the northeast Brazilian coast by combining bottom trawl data and underwater footage. Species composition was estimated by number and weight, while patterns of dominance were obtained based on frequency of occurrence and relative abundance. A total of 7235 individuals (830 kg), distributed in 24 orders, 49 families and 120 species were collected. Community structure was investigated through clustering analysis and by a non-metric multidimensional scaling technique. Finally, diversity was assessed based on six indices. Four major assemblages were identified, mainly associated with habitat type and depth range. The higher values of richness were found in sand substrate with rocks, coralline formations and sponges (SWCR) habitats, while higher values of diversity were found in habitats located on shallow waters (10–30 m). Further, assemblages associated with sponge-reef formations presented the highest values of richness and diversity. In management strategies of conservation, we thus recommend giving special attention on SWCR habitats, mainly those located on depths between 30 and 60 m. This can be achieved by an offshore expansion of existing MPAs and/or by the creation of new MPAs encompassing those environments.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0278-4343 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2384
Lien permanent pour cet enregistrement
 

 
Auteur Maire, Eva; Cinner, J.; Velez, L.; Huchery, C.; Mora, C.; D'agata, S.; Vigliola, L.; Wantiez, L.; Kulbicki, M.; Mouillot, D.
Titre How accessible are coral reefs to people? A global assessment based on travel time Type (up) Article scientifique
Année 2016 Publication Revue Abrégée Ecol. Lett.
Volume 19 Numéro 4 Pages 351-360
Mots-Clés Accessibility; biodiversity; coral reefs; ecological-systems; fish assemblages; fisheries; marine protected areas; market access; population-density; predictors; social<bold>-</bold>ecological; species richness; travel time; vulnerability
Résumé The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located <30min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1461-023x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1626
Lien permanent pour cet enregistrement