|   | 
Détails
   web
Enregistrements
Auteur Goetze, J.S.; Claudet, J.; Januchowski-Hartley, F.; Langlois, T.J.; Wilson, S.K.; White, C.; Weeks, R.; Jupiter, S.D.
Titre Demonstrating multiple benefits from periodically harvested fisheries closures Type Article scientifique
Année 2018 Publication Revue Abrégée J. Appl. Ecol.
Volume 55 Numéro 3 Pages 1102-1113
Mots-Clés analytical framework; conservation; coral-reef fishes; customary management; fisheries management; food security; locally managed marine areas; long-term; management; marine protected areas; marine reserve; matter; meta-analysis; metaanalysis; partially protected areas; periodically harvested closures; populations; reserves; small-scale fisheries; video
Résumé 1. Periodically harvested closures (PHCs) are one of the most common forms of fisheries management in Melanesia, demonstrating multiple objectives, including sustaining fish stocks and increasing catch efficiency to support small-scale fisheries. No studies have comprehensively assessed their ability to provide short-term fisheries benefits across the entire harvest regime. 2. We present a novel analytical framework to guide a meta-analysis and assist future research in conceptualizing and assessing the potential of PHCs to deliver benefits for multiple fisheries-related objectives. 3. Ten PHCs met our selection criteria and on average, they provided a 48% greater abundance and 92% greater biomass of targeted fishes compared with areas open to fishing prior to being harvested. 4. This translated into tangible harvest benefits, with fishers removing 21% of the abundance and 49% of the biomass within PHCs, resulting in few post-harvest protection benefits. 5. When PHCs are larger, closed for longer periods or well enforced, short-term fisheries benefits are improved. However, an increased availability of fish within PHCs leads to greater removal during harvests. 6. Synthesis and applications. Periodically harvested closures (PHCs) can provide short-term fisheries benefits. Use of the analytical framework presented here will assist in determining long-term fisheries and conservation benefits. We recommend PHCs be closed to fishing for as long as possible, be as large as possible, that compliance be encouraged via community engagement and enforcement, and strict deadlines/goals for harvesting set to prevent overfishing.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0021-8901 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 2345
Lien permanent pour cet enregistrement
 

 
Auteur Calo, A.; Lett, C.; Mourre, B.; Perez-Ruzafa, A.; Antonio Garcia-Charton, J.
Titre Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish Type Article scientifique
Année 2018 Publication Revue Abrégée Mar. Environ. Res.
Volume 134 Numéro Pages 16-27
Mots-Clés circulation; Mediterranean Sea; sea; dispersal; larval; habitat; marine protected areas; recruitment; variability; population connectivity; Dispersal distance; Lagrangian simulations; mesoscale eddies; Propagule release zones; Sea bream
Résumé The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the southeastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0141-1136 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 2313
Lien permanent pour cet enregistrement
 

 
Auteur Batsleer, J.; Marchal, P.; Vaz, S.; Vermard, V.; Rijnsdorp, A.D.; Poos, J.J.
Titre Exploring habitat credits to manage the benthic impact in a mixed fishery Type Article scientifique
Année 2018 Publication Revue Abrégée Mar. Ecol.-Prog. Ser.
Volume 586 Numéro Pages 167-179
Mots-Clés growth; sea; reserves; marine protected areas; juvenile; Plaice; Eastern English Channel; Fleet dynamics; vms data; fishing disturbance; central english-channel; Cod; costs; Dynamic state variable modelling; georges bank; Mixed fisheries; tac; Total allowable catch
Résumé The performance of a combined catch quota and habitat credit system was explored to manage the sustainable exploitation of a mix of demersal fish species and reduce the benthic impacts of bottom trawl fisheries using a dynamic state variable model approach. The model was parameterised for the Eastern English Channel demersal mixed fishery using otter trawls or dredges. Target species differed in their association with habitat types. Restricting catch quota for plaice and cod had a limited effect on benthic impact, except when reduced to very low values, forcing the vessels to stay in port. Quota management had a minimal influence on fishing behaviour and hence resulted in a minimal reduction of benthic impact. Habitat credits may reduce the benthic impacts of the trawl fisheries at a minimal loss of landings and revenue, as vessels are still able to reallocate their effort to less vulnerable fishing grounds, while allowing the fishery to catch their catch quota and maintain their revenue. Only if they are reduced to extremely low levels can habitat credits potentially constrain fishing activities to levels that prevent the fisheries from using up the catch quota for the target species.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0171-8630 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 2283
Lien permanent pour cet enregistrement
 

 
Auteur Espinosa, F.; Rivera-Ingraham, G.A.
Titre Biological Conservation of Giant Limpets: The Implications of Large Size Type Chapitre de livre
Année 2017 Publication Revue Abrégée
Volume Numéro Pages 105-155
Mots-Clés cymbula-nigra gastropoda; endangered limpet; lottia-gigantea; marine protected areas; mussel mytilus-galloprovincialis; patella-ferruginea gastropoda; population-structure; scutellastra-argenvillei; sex-change; south-african limpet
Résumé Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35 cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10 cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.
Adresse
Auteur institutionnel Thèse
Editeur Elsevier Academic Press Inc Lieu de Publication San Diego Éditeur Curry, B.E.
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé Advances in Marine Biology, Vol 76
Volume de collection 76 Numéro de collection Edition
ISSN ISBN 978-0-12-812402-4 978-0-12-812401-7 Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 2180
Lien permanent pour cet enregistrement
 

 
Auteur Goetze, J.S.; Januchowski-Hartley, F.A.; Claudet, J.; Langlois, T.J.; Wilson, S.K.; Jupiter, S.D.
Titre Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass Type Article scientifique
Année 2017 Publication Revue Abrégée Ecol. Appl.
Volume 27 Numéro 4 Pages 1178-1189
Mots-Clés artisanal fisheries; Catch Efficiency; Compliance; Conservation; coral-reef management; Customary Management; fish behavior; Fisheries management; Flight Initiation Distance; flight initiation distance; indo-pacific; marine protected areas; periodically harvested closures; predatory fish; Recovery; risk-assessment; stereo-video system
Résumé Identifying the most sensitive indicators to changes in fishing pressure is important for accurately detecting impacts. Biomass is thought to be more sensitive than abundance and length, while the wariness of fishes is emerging as a new metric. Periodically harvested closures (PHCs) that involve the opening and closing of an area to fishing are the most common form of fisheries management in the western Pacific. The opening of PHCs to fishing provides a unique opportunity to compare the sensitivity of metrics, such as abundance, length, biomass and wariness, to changes in fishing pressure. Diver-operated stereo video (stereo-DOV) provides data on fish behavior (using a proxy for wariness, minimum approach distance) simultaneous to abundance and length estimates. We assessed the impact of PHC protection and harvesting on the abundance, length, biomass, and wariness of target species using stereo-DOVs. This allowed a comparison of the sensitivity of these metrics to changes in fishing pressure across four PHCs in Fiji, where spearfishing and fish drives are common. Before PHCs were opened to fishing they consistently decreased the wariness of targeted species but were less likely to increase abundance, length, or biomass. Pulse harvesting of PHCs resulted in a rapid increase in the wariness of fishes but inconsistent impacts across the other metrics. Our results suggest that fish wariness is the most sensitive indicator of fishing pressure, followed by biomass, length, and abundance. The collection of behavioral data simultaneously with abundance, length, and biomass estimates using stereo-DOVs offers a cost-effective indicator of protection or rapid increases in fishing pressure. Stereo-DOVs can rapidly provide large amounts of behavioral data from monitoring programs historically focused on estimating abundance and length of fishes, which is not feasible with visual methods.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1051-0761 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection (down) 2151
Lien permanent pour cet enregistrement