|   | 
Détails
   web
Enregistrements
Auteur Marsac, F.; Galletti, F.; Ternon, J.-F.; Romanov, E.V.; Demarcq, H.; Corbari, L.; Bouchet, P.; Roest, W.R.; Jorry, S.J.; Olu, K.; Loncke, L.; Roberts, M.J.; Ménard, F.
Titre Seamounts, plateaus and governance issues in the southwestern Indian Ocean, with emphasis on fisheries management and marine conservation, using the Walters Shoal as a case study for implementing a protection framework Type Article scientifique
Année 2019 Publication Revue Abrégée Deep Sea Research Part II: Topical Studies in Oceanography
Volume Numéro Pages (down) 104715
Mots-Clés Amended Nairobi Convention; Areas Beyond National Jurisdiction; Benthic biodiversity; Deep-sea fisheries; Deep-sea mining; International Law of the Sea; Marine protected areas; Saya de Malha Bank; South Indian Ocean Fisheries Agreement; Vulnerable Marine Ecosystems
Résumé There is a growing interest in the management of seamounts of the Southwestern Indian Ocean (SWIO) both in waters under national jurisdictions and in the Areas Beyond National Jurisdiction (ABNJ). New scientific knowledge has been gathered through various oceanographic cruises during the past decade, and new agreements are under consideration globally to promote conservation and sustainable use of the biodiversity in the ABNJ, where the deep sea ecosystems associated with seamounts are a growing matter of concern. SWIO seamounts have attracted the interests of fishers since the 1960s, and contracts for mining exploration have been granted recently. Seamounts are known to shelter rich, fragile and poorly resilient ecosystems whose important ecological functions are threatened by various anthropogenic pressures. Whereas many seamounts and shoals are located in national waters, many others fall in the ABNJ, with no current legal status per se. To ensure conservation of their habitats and biodiversity, it is essential that protection measures are instigated under an internationally recognized legal and institutional framework. In this paper, we review the current state of such a framework relevant to seamounts, with emphasis on fisheries and conservation in the SWIO. An emblematic seamount, the Walters Shoal, is selected as a case study to discuss how it could become a fully-protected space in the ABNJ. As a large part of the SWIO is under the mandate of the Nairobi Convention (as a Regional Sea under the auspices of UNEP), guidelines are proposed to encourage dedicated seamount governance within the framework of this Convention.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0967-0645 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2689
Lien permanent pour cet enregistrement
 

 
Auteur Magris, R.A.; Andrello, M.; Pressey, R.L.; Mouillot, D.; Dalongeville, A.; Jacobi, M.N.; Manel, S.
Titre Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning Type Article scientifique
Année 2018 Publication Revue Abrégée Conserv. Lett.
Volume 11 Numéro 4 Pages (down) Unsp-e12439
Mots-Clés biodiversity conservation; climate-change; coral-reefs; design; larval dispersal; marine protected areas; marine reserve design; networks; population connectivity; protected areas; spatial planning; spatial prioritization
Résumé Current methods in conservation planning for promoting the persistence of biodiversity typically focus on either representing species geographic distributions or maintaining connectivity between reserves, but rarely both, and take a focal species, rather than a multispecies, approach. Here, we link prioritization methods with population models to explore the impact of integrating both representation and connectivity into conservation planning for species persistence. Using data on 288 Mediterranean fish species with varying conservation requirements, we show that: (1) considering both representation and connectivity objectives provides the best strategy for enhanced biodiversity persistence and (2) connectivity objectives were fundamental to enhancing persistence of small-ranged species, which are most in need of conservation, while the representation objective benefited only wide-ranging species. Our approach provides a more comprehensive appraisal of planning applications than approaches focusing on either representation or connectivity, and will hopefully contribute to build more effective reserve networks for the persistence of biodiversity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1755-263x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2423
Lien permanent pour cet enregistrement
 

 
Auteur Roberts, C.M.; O’Leary, B.C.; McCauley, D.J.; Cury, P.M.; Duarte, C.M.; Lubchenco, J.; Pauly, D.; Sáenz-Arroyo, A.; Sumaila, U.R.; Wilson, R.W.; Worm, B.; Castilla, J.C.
Titre Marine reserves can mitigate and promote adaptation to climate change Type Article scientifique
Année 2017 Publication Revue Abrégée Pnas
Volume 114 Numéro 24 Pages (down) 6167-6175
Mots-Clés ecological insurance; global change; Marine Protected Areas; Mpa; nature-based solution
Résumé Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0027-8424, 1091-6490 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2144
Lien permanent pour cet enregistrement
 

 
Auteur Carvalho, P.G.; Jupiter, S.D.; Januchowski-Hartley, F.A.; Goetze, J.; Claudet, J.; Weeks, R.; Humphries, A.; White, C.
Titre Optimized fishing through periodically harvested closures Type Article scientifique
Année 2019 Publication Revue Abrégée J. Appl. Ecol.
Volume 56 Numéro 8 Pages (down) 1927-1936
Mots-Clés bioeconomic model; conservation; coral-reef fishes; fish behaviour; fisheries management; management; marine protected areas; marine reserves; new-zealand; outcomes; periodically harvested closures; population dynamics; vulnerability; yield
Résumé Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to <= 18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0021-8901 ISBN Médium
Région Expédition Conférence
Notes WOS:000478601300007 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2619
Lien permanent pour cet enregistrement
 

 
Auteur Kaplan, D.; Chassot, E.; Amande, J.M.; Dueri, S.; Demarcq, H.; Dagorn, L.; Fonteneau, A.
Titre Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives Type Article scientifique
Année 2014 Publication Revue Abrégée Ices Journal of Marine Science
Volume 71 Numéro 7 Pages (down) 1728-1749
Mots-Clés Bycatch; conservation; Indian Ocean; Marine protected areas (MPAs); pelagic; spatial management of fisheries; tropical tuna fisheries
Résumé Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, by catch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1054-3139 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1199
Lien permanent pour cet enregistrement