bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrements Liens
Auteur (down) Grüss, A.; Kaplan, D.M.; Robinson, J. url  doi
openurl 
  Titre Evaluation of the effectiveness of marine reserves for transient spawning aggregations in data-limited situations Type Article scientifique
  Année 2013 Publication Revue Abrégée ICES J. Mar. Sci.  
  Volume Numéro Pages  
  Mots-Clés coral reef fish; fisheries closures; marine conservation; Marine Protected Areas; protogynous hermaphrodites; resource management  
  Résumé Grüss, A., Kaplan, D. M., and Robinson, J. Evaluation of the effectiveness of marine reserves for transient spawning aggregations in data-limited situations. – ICES Journal of Marine Science, doi:10.1093/icesjms/fst028. Many coral reef fish species form predictable, transient spawning aggregations. Many aggregations are overfished, making them a target for spatial management. Here, we develop a per-recruit model to evaluate the performance of no-take marine reserves protecting transient spawning aggregations. The model consists of only 14 demographic and exploitation-related parameters. We applied the model to a protogynous grouper and a gonochoristic rabbitfish from Seychelles and tested six scenarios regarding the extent of protected areas, the level of fish spawning-site fidelity, and fishing effort redistribution post reserve implementation. Spawning aggregation reserves improve spawning-stock biomass-per-recruit and reduce the sex ratio bias in protogynous populations for all scenarios examined. However, these benefits are often small and vary among the different scenarios and as a function of sexual ontogeny. In all scenarios, increases in yield-per-recruit do not occur or are negligible. The long-term yield increases due to spawning aggregation reserves may still occur, but only if spawning-stock biomass recovery results in a recruitment subsidy. Given these limited benefits, the value of no-take reserves must be weighed against those of other management options, such as fishing effort reduction and seasonal fishery closures. The latter is particularly appropriate when spawning and non-spawning areas overlap in space.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue en Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1054-3139, 1095-9289 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel LL @ pixluser @ collection 259  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Goetze, J.S.; Januchowski-Hartley, F.A.; Claudet, J.; Langlois, T.J.; Wilson, S.K.; Jupiter, S.D. doi  openurl
  Titre Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass Type Article scientifique
  Année 2017 Publication Revue Abrégée Ecol. Appl.  
  Volume 27 Numéro 4 Pages 1178-1189  
  Mots-Clés artisanal fisheries; Catch Efficiency; Compliance; Conservation; coral-reef management; Customary Management; fish behavior; Fisheries management; Flight Initiation Distance; flight initiation distance; indo-pacific; marine protected areas; periodically harvested closures; predatory fish; Recovery; risk-assessment; stereo-video system  
  Résumé Identifying the most sensitive indicators to changes in fishing pressure is important for accurately detecting impacts. Biomass is thought to be more sensitive than abundance and length, while the wariness of fishes is emerging as a new metric. Periodically harvested closures (PHCs) that involve the opening and closing of an area to fishing are the most common form of fisheries management in the western Pacific. The opening of PHCs to fishing provides a unique opportunity to compare the sensitivity of metrics, such as abundance, length, biomass and wariness, to changes in fishing pressure. Diver-operated stereo video (stereo-DOV) provides data on fish behavior (using a proxy for wariness, minimum approach distance) simultaneous to abundance and length estimates. We assessed the impact of PHC protection and harvesting on the abundance, length, biomass, and wariness of target species using stereo-DOVs. This allowed a comparison of the sensitivity of these metrics to changes in fishing pressure across four PHCs in Fiji, where spearfishing and fish drives are common. Before PHCs were opened to fishing they consistently decreased the wariness of targeted species but were less likely to increase abundance, length, or biomass. Pulse harvesting of PHCs resulted in a rapid increase in the wariness of fishes but inconsistent impacts across the other metrics. Our results suggest that fish wariness is the most sensitive indicator of fishing pressure, followed by biomass, length, and abundance. The collection of behavioral data simultaneously with abundance, length, and biomass estimates using stereo-DOVs offers a cost-effective indicator of protection or rapid increases in fishing pressure. Stereo-DOVs can rapidly provide large amounts of behavioral data from monitoring programs historically focused on estimating abundance and length of fishes, which is not feasible with visual methods.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1051-0761 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2151  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Goetze, J.S.; Claudet, J.; Januchowski-Hartley, F.; Langlois, T.J.; Wilson, S.K.; White, C.; Weeks, R.; Jupiter, S.D. doi  openurl
  Titre Demonstrating multiple benefits from periodically harvested fisheries closures Type Article scientifique
  Année 2018 Publication Revue Abrégée J. Appl. Ecol.  
  Volume 55 Numéro 3 Pages 1102-1113  
  Mots-Clés analytical framework; conservation; coral-reef fishes; customary management; fisheries management; food security; locally managed marine areas; long-term; management; marine protected areas; marine reserve; matter; meta-analysis; metaanalysis; partially protected areas; periodically harvested closures; populations; reserves; small-scale fisheries; video  
  Résumé 1. Periodically harvested closures (PHCs) are one of the most common forms of fisheries management in Melanesia, demonstrating multiple objectives, including sustaining fish stocks and increasing catch efficiency to support small-scale fisheries. No studies have comprehensively assessed their ability to provide short-term fisheries benefits across the entire harvest regime. 2. We present a novel analytical framework to guide a meta-analysis and assist future research in conceptualizing and assessing the potential of PHCs to deliver benefits for multiple fisheries-related objectives. 3. Ten PHCs met our selection criteria and on average, they provided a 48% greater abundance and 92% greater biomass of targeted fishes compared with areas open to fishing prior to being harvested. 4. This translated into tangible harvest benefits, with fishers removing 21% of the abundance and 49% of the biomass within PHCs, resulting in few post-harvest protection benefits. 5. When PHCs are larger, closed for longer periods or well enforced, short-term fisheries benefits are improved. However, an increased availability of fish within PHCs leads to greater removal during harvests. 6. Synthesis and applications. Periodically harvested closures (PHCs) can provide short-term fisheries benefits. Use of the analytical framework presented here will assist in determining long-term fisheries and conservation benefits. We recommend PHCs be closed to fishing for as long as possible, be as large as possible, that compliance be encouraged via community engagement and enforcement, and strict deadlines/goals for harvesting set to prevent overfishing.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0021-8901 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2345  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Giakoumi, S.; Guilhaumon, F.; Kark, S.; Terlizzi, A.; Claudet, J.; Felline, S.; Cerrano, C.; Coll, M.; Danovaro, R.; Fraschetti, S.; Koutsoubas, D.; Ledoux, J.-B.; Mazor, T.; Mérigot, B.; Micheli, F.; Katsanevakis, S. doi  openurl
  Titre Space invaders; biological invasions in marine conservation planning Type Article scientifique
  Année 2016 Publication Revue Abrégée Divers. Distrib.  
  Volume 22 Numéro 12 Pages 1220-1231  
  Mots-Clés alien species; biodiversity; biological invasions; coastal; conservation planning; cost; diversity; ecosystem; impacts; management actions; marine biogeographic regions; marine protected areas; Mediterranean Sea; pathways; protected areas; strategy  
  Résumé AimBiological invasions are major contributors to global change and native biodiversity decline. However, they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we explore the change of spatial priorities in conservation plans when different approaches are used to incorporate the presence and impacts of invasive species. LocationGlobal analysis with a focus on the Mediterranean Sea region. MethodsWe conducted a systematic literature review consisting of three steps: (1) article selection using a search engine, (2) abstract screening and (3) review of pertinent articles, which were identified in the second step. The information extracted included the scale and geographical location of each case study as well as the approach followed regarding invasive species. We also applied the software Marxan to produce and compare conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish species. ResultsWe found that of 119 papers on marine spatial plans in specific biogeographic regions, only three (2.5%) explicitly took into account invasive species. When comparing the different conservation plans for each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case study. Main conclusionsBiological invasions are being widely disregarded when planning for conservation in the marine environment across local to global scales. More explicit consideration of biological invasions can significantly alter spatial conservation priorities. Future conservation plans should explicitly account for biological invasions to optimize the selection of marine protected areas.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 1366-9516 ISBN Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 1704  
Lien permanent pour cet enregistrement
 

 
Auteur (down) Espinosa, F.; Rivera-Ingraham, G.A. doi  isbn
openurl 
  Titre Biological Conservation of Giant Limpets: The Implications of Large Size Type Chapitre de livre
  Année 2017 Publication Revue Abrégée  
  Volume Numéro Pages 105-155  
  Mots-Clés cymbula-nigra gastropoda; endangered limpet; lottia-gigantea; marine protected areas; mussel mytilus-galloprovincialis; patella-ferruginea gastropoda; population-structure; scutellastra-argenvillei; sex-change; south-african limpet  
  Résumé Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35 cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10 cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.  
  Adresse  
  Auteur institutionnel Thèse  
  Editeur Elsevier Academic Press Inc Lieu de Publication San Diego Éditeur Curry, B.E.  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé Advances in Marine Biology, Vol 76  
  Volume de collection 76 Numéro de collection Edition  
  ISSN ISBN 978-0-12-812402-4 978-0-12-812401-7 Médium  
  Région Expédition Conférence  
  Notes Approuvé pas de  
  Numéro d'Appel MARBEC @ alain.herve @ collection 2180  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: