|   | 
Détails
   web
Enregistrements
Auteur Albouy, C.; Mouillot, D.; Rocklin, D.; Culioli, J.M.; Loc'h, F.L.
Titre Simulation of the combined effects of artisanal and recreational fisheries on a Mediterranean MPA ecosystem using a trophic model Type Article scientifique
Année 2010 Publication Revue Abrégée Marine Ecology – Progress Series
Volume 412 Numéro Pages 207-221
Mots-Clés activities; Artisanal; cascades; Ecopath; Ecosim; Epinephelus; fisheries; marginatus; Mediterranean; Mpa; Recreational; Sea; Trophic; with
Résumé Marine protected areas (MPAs) have the potential to enhance the long-term sustainability of coastal resources, and the artisanal fisheries which depend on them. However, recreational fisheries, which are increasing their impacts on coastal resources worldwide, may reduce the benefits that MPAs provide to declining artisanal fisheries. Here we used the Bonifacio Straits Natural Reserve (BSNR) Corsica as a study case to simulate the combined effects on coastal resources of artisanal and recreational fishing efforts. The BSNR ecosystem was modelled using mass-balance modelling of trophic interactions. This model was compared to another built on a non-protected area from the same region. We aggregated fishing fleets into artisanal and recreational categories, and we simulated various combinations of fishing effort over a 20 yr dynamic simulation using Ecosim. We showed that fishing activities have an additional top-down effect on the food web and that they decrease the targeted group's biomass, such as piscivorous species. We found, for some trophic groups, non-trivial patterns of biomass variation through trophic cascades. Our trophic approach revealed that some groups may suffer a biomass decrease when MPAs are set or enforced, due to the combined effect of artisanal and recreational fisheries. Overall, our results illustrate the value of modelling to manage MPAs, as a complementary tool to surveys. Models provide the opportunity to anticipate the potential consequences, at the ecosystem level, of socio-political decisions that aim to sustain coastal resources while managing artisanal and recreational fisheries.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0171-8630 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 55
Lien permanent pour cet enregistrement
 

 
Auteur Andrello, M.; Mouillot, D.; Somot, S.; Thuiller, W.; Manel, S.
Titre Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas Type Article scientifique
Année 2015 Publication Revue Abrégée Diversity Distrib.
Volume 21 Numéro 2 Pages 139-150
Mots-Clés Biophysical model; conservation planning; Epinephelus marginatus; larval dispersal; larval growth rate; reproductive timing
Résumé Aim To study the combined effects of climate change on connectivity between marine protected areas (MPAs) and larval supply to the continental shelf. Location The Mediterranean Sea, where sea surface temperatures are expected to strongly increase by the end of the 21st century, represents an archetypal situation with a dense MPA network but resource overexploitation outside. Methods Using an individual-based mechanistic model of larval transport, forced with an emission-driven regional climate change scenario for the Mediterranean Sea, we explored the combined effects of changes in hydrodynamics, adult reproductive timing and larval dispersal on the connectivity among MPAs and their ability to seed fished areas with larvae. Results We show that, over the period 1970–2099, larval dispersal distances would decrease by 10%, the continental shelf area seeded with larvae would decrease by 3% and the larval retention fraction would increase by 5%, resulting in higher concentration of larvae in smaller areas of the continental shelf. However, connectance within the MPA network would increase by 5% as more northern MPAs would become suitable for reproduction with increasing temperatures. We also show that the effects of changes in adult reproductive timing and larval dispersal on connectivity patterns are additive. Main conclusions Climate change will influence connectivity and the effectiveness of MPA networks, and should receive more attention in future conservation planning and large-scale population dynamics.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1472-4642 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1282
Lien permanent pour cet enregistrement