|   | 
Détails
   web
Enregistrements
Auteur Lett, C.; Semeria, M.; Thiebault, A.; Tremblay, Y.
Titre (up) Effects of successive predator attacks on prey aggregations Type Article scientifique
Année 2014 Publication Revue Abrégée Theor Ecol
Volume 7 Numéro 3 Pages 239-252
Mots-Clés Animal aggregation; Animal group; Attraction-repulsion model; Flock; Plant Sciences; School; Swarm; Theoretical Ecology/Statistics; Zoology
Résumé We study the cumulative effect of successive predator attacks on the disturbance of a prey aggregation using a modelling approach. Our model intends to represent fish schools attacked by both aerial and underwater predators. This individual-based model uses long-distance attraction and short-distance repulsion between prey, which leads to prey aggregation and swarming in the absence of predators. When intermediate-distance alignment is added to the model, the prey aggregation displays a cohesive displacement, i.e., schooling, instead of swarming. Including predators, i.e. with repulsion behaviour for prey to predators in the model, leads to flash expansion of the prey aggregation after a predator attack. When several predators attack successively, the prey aggregation dynamics is a succession of expanding-grouping-swarming/schooling phases. We quantify this dynamics by recording the changes in the simulated prey aggregation radius over time. This radius is computed as the longest distance of individual prey to the aggregation centroid, and it is assumed to increase along with prey disturbance. The prey aggregation radius generally increases during flash expansion, then decreases during grouping until reaching a constant lowest level during swarming/schooling. This general dynamics is modulated by several parameters: the frequency, direction (vertical vs. horizontal) and target (centroid of the prey aggregation vs. random prey) of predator attacks; the distance at which prey detect predators; the number of prey and predators. Our results suggest that both aerial and underwater predators are more efficient at disturbing fish schools by increasing their attack frequency at such level that the fish cannot return to swarming/schooling. We find that a mix between aerial and underwater predators is more efficient at disturbing a fish school than a single type of attack, suggesting that aerial and underwater foragers may gain mutual benefits in forming foraging groups.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1874-1738, 1874-1746 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel LL @ pixluser @ collection 350
Lien permanent pour cet enregistrement
 

 
Auteur Maloufi, S.; Catherine, A.; Mouillot, D.; Louvard, C.; Couté, A.; Bernard, C.; Troussellier, M.
Titre (up) Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities Type Article scientifique
Année 2016 Publication Revue Abrégée Freshw Biol
Volume 61 Numéro 5 Pages 633-645
Mots-Clés environmental heterogeneity; meta-community ecology; Phytoplankton; species sorting; turnover
Résumé * The extent to which stochastic and deterministic processes influence variations in species communities across space and time remains a central question in theoretical and applied ecology. Despite their high dispersal ability, the composition of phytoplankton communities displays striking spatial variations among lakes even at small spatial scale. * To investigate the mechanisms underlying the distribution of phytoplankton species, we evaluate the contribution of stochastic, spatial and environmental processes in determining β-diversity patterns of phytoplankton at a regional scale. Phytoplankton communities were surveyed in 50 different lakes from north-central France, a region characterised by strong environmental heterogeneity. * The regional species pool was characterised by extremely high β-diversity levels, which were mainly explained by species replacement (i.e. turnover) rather than by differences in species richness (i.e. nestedness). Null models of random species distribution and spatial processes failed to explain observed β-diversity patterns. At the opposite, local environmental conditions strongly influenced the degree of uniqueness of local phytoplankton communities, with the most contrasted environments, including human-dominated areas, promoting highly distinct phytoplankton communities. * Our results suggest that species-sorting mechanisms that arise from variations in local environmental conditions drive high species turnover at the region scale. Thus, in a landscape strongly impacted by cultural eutrophication, further anthropogenic impacts on aquatic ecosystems would likely induce regional homogenisation of phytoplankton communities. Overall, our study supports the fact that the management of lakes and reservoirs in anthropic landscapes should aim at maintaining environmental heterogeneity while preventing further eutrophication in order to favour the maintenance of high phytoplankton β- and γ-diversity.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue en Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1365-2427 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 1569
Lien permanent pour cet enregistrement
 

 
Auteur Jacquet, C.; Mouillot, D.; Kulbicki, M.; Gravel, D.
Titre (up) Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation Type Article scientifique
Année 2017 Publication Revue Abrégée Ecol. Lett.
Volume 20 Numéro 2 Pages 135-146
Mots-Clés Allometric theory; animal abundance; body-size; body-size distributions; complex food webs; coral-reef fishes; diversity; Ecology; evolution; Food web; global patterns; island biogeography; population-density; species richness; tropical reefs
Résumé The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1461-023x ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2087
Lien permanent pour cet enregistrement
 

 
Auteur Lavergne, C.; Agogué, H.; Leynaert, A.; Raimonet, M.; De Wit, R.; Pineau, P.; Bréret, M.; Lachaussée, N.; Dupuy, C.
Titre (up) Factors influencing prokaryotes in an intertidal mudflat and the resulting depth gradients Type Article scientifique
Année 2017 Publication Revue Abrégée Estuarine, Coastal and Shelf Science
Volume 189 Numéro Pages 74-83
Mots-Clés Benthic ecology; Intertidal mudflat; microbial communities; Sediment depth
Résumé Intertidal mudflats are rich and fluctuating systems in which the upper 20 cm support a high diversity and density of microorganisms that ensure diversified roles. The depth profiles of microbial abundances and activities were measured in an intertidal mudflat (Marennes-Oléron Bay, SW France) at centimeter-scale resolution (0–10 cm below the sediment surface). The aim of the study was to detect microbial stratification patterns within the sediments and the way in which this stratification is shaped by environmental drivers. Two sampling dates, i.e. one in summer and another in winter, were compared. The highest activities of the microbial communities were observed in July in the surface layers (0–1 cm), with a strong decrease of activities with depth. In contrast, in February, low microbial bulk activities were recorded throughout the sediment. In general, prokaryotic abundances and activities were significantly correlated. Variation partitioning analysis suggested a low impact of predation and a mainly bottom-up-controlled prokaryotic community. Hence, in the top layer from the surface to 1–3.5 cm depth, microbial communities were mainly affected by physicochemical variables (i.e. salinity, phosphate and silicate concentrations). Below this zone and at least to 10 cm depth, environmental variables were more stable and prokaryotic activities were low. The transition zone between both layers probably represents a rather smooth gradient (environmental ecocline). The results of our study provide a better understanding of the complex interactions between micro-organisms and their environment in a fluctuating ecosystem such as an intertidal mudflat.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0272-7714 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 2094
Lien permanent pour cet enregistrement
 

 
Auteur Lopez, N.; Navarro, J.; Barria, C.; Albo-Puigserver, M.; Coll, M.; Palomera, I.
Titre (up) Feeding ecology of two demersal opportunistic predators coexisting in the northwestern Mediterranean Sea Type Article scientifique
Année 2016 Publication Revue Abrégée Estuar. Coast. Shelf Sci.
Volume 175 Numéro Pages 15-23
Mots-Clés abundance; anglerfish lophius-budegassa; Black anglerfish; communities; diet; fish; habits; linnaeus; Lophius budegassa; Lophius piscatorius; osteichthyes; piscatorius; Spatial distributions; Stable isotopes; Stomach contents; Trophic ecology; White anglerfish
Résumé The study of the feeding ecology of marine organisms is crucial to understanding their ecological roles and advancing our knowledge of marine ecosystem functioning. The aim of this study was to analyse the trophic ecology of two demersal predator species, black anglerfish (Lophius budegassa) and white anglerfish (L. piscatorius), in the northwestern Mediterranean Sea. Both species are important in the study area due to their high abundance and economic value, but information about their feeding behaviour is scarce. Here, we described the diet composition and ecological role of these two species, investigating whether trophic segregation exists between them and amongst fish of different sizes. In addition, by using experimental survey data we described the spatial distribution of both species to help us interpret trophic behaviour patterns. We gathered samples of two different sizes (small individuals of a total length <30 cm and large individuals >= 30 cm) of both species and combined stomach content analyses (SCA) and stable isotope analyses (SIA) of nitrogen and carbon with isotopic mixing models. Our results revealed that both anglerfish species are opportunistic predators, showing a diet composed mainly of fishes and, to a lesser extent, of crustaceans, with a small proportion of cephalopods, gastropods, bivalves and echinoderms. We found trophic segregation between the two species and the two sizes, indicating that they feed on different prey, in line with differences in their spatial distribution within the study area. This partial partition of food resources could also be explained by the differences in rhythms of activity that were reported in previous studies. In addition, although both species occupied a high position within the food web, our results showed that white anglerfish individuals and the large-sized fish of both species held higher trophic positions. This study demonstrates the usefulness of complementary approaches for trophic studies and confirms that both anglerfish species play an important role as predators in the northwestern Mediterranean Sea food web. (C) 2016 Elsevier Ltd. All rights reserved.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0272-7714 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ alain.herve @ collection 1647
Lien permanent pour cet enregistrement