|   | 
Détails
   web
Enregistrements
Auteur Ramirez-Romero, E.; Molinero, J.C.; Sommer, U.; Salhi, N.; Yahia, O.K.-D.; Yahia, M.N.D.
Titre Phytoplankton size changes and diversity loss in the southwestern Mediterranean Sea in relation to long-term hydrographic variability Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Estuar. Coast. Shelf Sci.
Volume 235 Numéro Pages 106574
Mots-Clés bay; climate-change; Diversity loss; dynamics; evolution; jellyfish; marine; Nanophytoplankton; Ocean warming; patterns; Phytoplankton diversity; plankton communities; Size structural changes; Southwestern mediterranean; temperature; time-series
Résumé Structural changes in plankton primary producers have large implications for food web dynamics, energy fluxes and the vertical export of biogenic particulate carbon. Here we examine phytoplankton data spanning the period 1993-2008 from the Bay of Tunis, southwestern Mediterranean Sea, in relation to long term hydroclimate variability. We show a conspicuous shift in the structure of the phytoplankton community characterized by an increase of small-sized species and diversity loss, revealing a dominance of smaller blooming diatoms and cyanobacteria. Such changes were concurrent with marked modifications in hydroclimatic patterns experienced in the Bay of Tunis consisting of a shift towards enhanced winter precipitation together with rising temperatures. This novel study shows an overall rise in the proportion of small phytoplankton cells and a decreasing trend in phytoplankton diversity in the southern Mediterranean area. These findings warn of a potential decline of trophic efficiency and lesser food web stability resulting from mean size reduction and the diversity loss.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0272-7714 ISBN Médium
Région Expédition Conférence
Notes WOS:000527915700034 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2766
Lien permanent pour cet enregistrement
 

 
Auteur Puerta, P.; Johnson, C.; Carreiro-Silva, M.; Henry, L.-A.; Kenchington, E.; Morato, T.; Kazanidis, G.; Luis Rueda, J.; Urra, J.; Ross, S.; Wei, C.-L.; Manuel Gonzalez-Irusta, J.; Arnaud-Haond, S.; Orejas, C.
Titre Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Front. Mar. Sci.
Volume 7 Numéro Pages 239
Mots-Clés antarctic intermediate water; biodiversity; biogeography; climate-change impacts; coral lophelia-pertusa; deep-sea; food-supply mechanisms; global habitat suitability; meridional overturning circulation; ne atlantic; North Atlantic; ocean acidification; porcupine seabight; rockall trough margin; vulnerable marine ecosystems; water masses
Résumé Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple times over millions of years, influencing the biodiversity, distribution, and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry, and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems (VME) with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2 degrees C), organic carbon fluxes (reduced up to 50%), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (> 5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient cycling, etc. This study shows that the deep-sea VME affected by contemporary anthropogenic impacts and with the ongoing climate change impacts are unlikely to withstand additional pressures from more intrusive human activities. This study serves also as a warning to protect these ecosystems through regulations and by tempering the ongoing socio-political drivers for increasing exploitation of marine resources.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes WOS:000526864100001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2767
Lien permanent pour cet enregistrement
 

 
Auteur Brandt, M.; Trouche, B.; Henry, N.; Liautard-Haag, C.; Maignien, L.; de Vargas, C.; Wincker, P.; Poulain, J.; Zeppilli, D.; Arnaud-Haond, S.
Titre An Assessment of Environmental Metabarcoding Protocols Aiming at Favoring Contemporary Biodiversity in Inventories of Deep-Sea Communities Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Front. Mar. Sci.
Volume 7 Numéro Pages 234
Mots-Clés benthic ecology; biomonitoring; deep-sea biodiversity; diversity; environmental metabarcoding; extracellular dna; extracellular DNA; extraction; foraminifera; impacts; method testing; preservation; RNA versus DNA; sediments; taxa
Résumé The abyssal seafloor covers more than 50% of planet Earth and is a large reservoir of still mostly undescribed biodiversity. It is increasingly targeted by resource-extraction industries and yet is drastically understudied. In such remote and hard-to-access ecosystems, environmental DNA (eDNA) metabarcoding is a useful and efficient tool for studying biodiversity and implementing environmental impact assessments. Yet, eDNA analysis outcomes may be biased toward describing past rather than present communities as sediments contain both contemporary and ancient DNA. Using commercially available kits, we investigated the impacts of five molecular processing methods on eDNA metabarcoding biodiversity inventories targeting prokaryotes (16S), unicellular eukaryotes (18S-V4), and metazoans (18S-V1, COI). As the size distribution of ancient DNA is skewed toward small fragments, we evaluated the effect of removing short DNA fragments via size selection and ethanol reconcentration using eDNA extracted from 10 g of sediment at five deep-sea sites. We also compare communities revealed by eDNA and environmental RNA (eRNA) co-extracted from similar to 2 g of sediment at the same sites. Results show that removing short DNA fragments does not affect alpha and beta diversity estimates in any of the biological compartments investigated. Results also confirm doubts regarding the possibility to better describe live communities using eRNA. With ribosomal loci, eRNA, while resolving similar spatial patterns than co-extracted eDNA, resulted in significantly higher richness estimates, supporting hypotheses of increased persistence of ribosomal RNA (rRNA) in the environment and unmeasured bias due to overabundance of rRNA and RNA release. With the mitochondrial locus, eRNA detected lower metazoan richness and resolved fewer spatial patterns than co-extracted eDNA, reflecting high messenger RNA lability. Results also highlight the importance of using large amounts of sediment (>= 10 g) for accurately surveying eukaryotic diversity. We conclude that eDNA should be favored over eRNA for logistically realistic, repeatable, and reliable surveys and confirm that large sediment samples (>= 10 g) deliver more complete and accurate assessments of benthic eukaryotic biodiversity and that increasing the number of biological rather than technical replicates is important to infer robust ecological patterns.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes WOS:000531310000001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2791
Lien permanent pour cet enregistrement
 

 
Auteur Mannocci, L.; Roberts, J.J.; Pedersen, E.J.; Halpin, P.N.
Titre Geographical differences in habitat relationships of cetaceans across an ocean basin Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Ecography
Volume Numéro Pages
Mots-Clés associations; atlantic; conservation; distribution models; diversity; environmental predictors; geographical variation; habitat relationships; highly mobile marine species; marine mammals; North Atlantic Ocean; populations; predator; species distribution modeling; temperature; whales
Résumé The distributions of highly mobile marine species such as cetaceans are increasingly modeled at basin scale by combining data from multiple regions. However, these basin-wide models often overlook geographical variations in species habitat relationships between regions. We tested for geographical variations in habitat relationships for a suite of cetacean taxa between the two sides of the North Atlantic basin. Using cetacean visual survey data and remote sensing data from the western and eastern basin in summer, we related the probability of presence of twelve cetacean taxa from three guilds to seafloor depth, sea surface temperature and primary productivity. In a generalized additive model framework, we fitted 1) basin-wide (BW) models, assuming a single global relationship, 2) region-specific intercepts (RI) models, assuming relationships with the same shape in both regions, but allowing a region-specific intercept and 3) region-specific shape (RS) models, assuming relationships with different shapes between regions. RS models mostly yielded significantly better fits than BW models, indicating cetacean occurrences were better modeled with region-specific than with global relationships. The better fits of RS models over RI models further provided statistical evidence for differences in the shapes of region-specific relationships. Baleen whales showed striking differences in both the shapes of relationships and their mean presence probabilities between regions. Deep diving whales and delphinoids showed contrasting relationships between regions with few exceptions (e.g. non-statistically different shapes of region-specific relationships for harbor porpoise and beaked whales with depth). Our findings stress the need to account for geographical differences in habitat relationships between regions when modeling species distributions from combined data at the basin scale. Our proposed hypotheses offer a roadmap for understanding why habitat relationships may geographically vary in cetaceans and other highly mobile marine species.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0906-7590 ISBN Médium
Région Expédition Conférence
Notes WOS:000531110000001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2792
Lien permanent pour cet enregistrement
 

 
Auteur Fournier, T.; Fevre, J.; Carcaillet, F.; Carcaillet, C.
Titre For a few years more: reductions in plant diversity 70 years after the last fire in Mediterranean forests Type Article scientifique
Année (down) 2020 Publication Revue Abrégée Plant Ecol.
Volume Numéro Pages
Mots-Clés climate-change; community composition; Community diversity; disturbance; Disturbance; Ecology; establishment; Fire; Forest; land-use; pinus-halepensis; postfire regeneration; regeneration patterns; Richness; succession; Succession; vegetation dynamics
Résumé Changes in community diversity and dynamics after fires in Mediterranean ecosystems are rarely investigated more than a few years after the fire even though pronounced changes can be expected in the longer term due to substitution of canopy species. Pinus halepensis is strongly promoted by wildfire and should therefore be gradually substituted by Quercus species as the time since the last fire increases. We hypothesized that this tree substitution would cause changes in understorey plant diversity by changing resource availability and the abundance and properties of woody debris, leading to changes in biogeochemical processes. To test this hypothesis, we investigated the effect of the time since last fire on vascular plant composition and diversity by studying a 130 years post-fire chronosequence in mixed Mediterranean forests. The canopy composition went from domination by Pinus halepensis to domination by Quercus 70 years after the most recent fire. This transformation was associated with a change in the understorey involving a rarefaction of species present during the first decades after the fire. The plant density or cover also changed with time since the last fire, indicating a succession driven by species rarefaction rather than substitution. The mean richness and Shannon diversity per quadrat were highest shortly after the fire, and were significantly lower 70 or more years after the last fire. Fires are important for supporting highly diversified fire-dependent plant communities, and total plant richness decreases monotonically over time after fires, suggesting that fire suppression may reduce diversity in Mediterranean forests.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 1385-0237 ISBN Médium
Région Expédition Conférence
Notes WOS:000530957300001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2793
Lien permanent pour cet enregistrement