|   | 
Détails
   web
Enregistrements
Auteur Moullec, F.; Barrier, N.; Drira, S.; Guilhaumon, F.; Marsaleix, P.; Somot, S.; Ulses, C.; Velez, L.; Shin, Y.-J.
Titre An End-to-End Model Reveals Losers and Winners in a Warming Mediterranean Sea Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Front. Mar. Sci.
Volume 6 Numéro Pages
Mots-Clés Biodiversity scenario; Climate Change; Ecosytem model; End-to-end model; Fishing; Mediterraenan sea; Osmose
Résumé The Mediterranean Sea is now recognized as a hotspot of global change, ranking among the fastest warming ocean regions. In order to project future plausible scenarios of marine biodiversity at the scale of the whole Mediterranean basin, the current challenge is to develop an explicit representation of the multispecies spatial dynamics under the combined influence of fishing pressure and climate change. Notwithstanding the advanced state-of-the-art modelling of food webs in the region, no previous studies have projected the consequences of climate change on marine ecosystems in an integrated way, considering changes in ocean dynamics, in phyto- and zoo-plankton productions, shifts in Mediterranean species distributions and their trophic interactions at the whole basin scale. We used an integrated modelling chain including a high-resolution regional climate model, a regional biogeochemistry model and a food web model OSMOSE to project the potential effects of climate change on biomass and catches for a wide array of species in the Mediterranean Sea. We showed that projected climate change would have large consequences for marine biodiversity by the end of the 21st century under a business-as-usual scenario (RCP8.5 with current fishing mortality). The total biomass of high trophic level species (fish and macroinvertebrates) is projected to increase by 5% and 22% while total catch is projected to increase by 0.3% and 7% by 2021-2050 and 2071-2100, respectively. However, these global increases masked strong spatial and inter-species contrasts. The bulk of increase in catch and biomass would be located in the southeastern part of the basin while total catch could decrease by up to 23% in the western part. Winner species would mainly belong to the pelagic group, are thermophilic and/or exotic, of smaller size and of low trophic level while loser species are generally large-sized, some of them of great commercial interest, and could suffer from a spatial mismatch with potential prey subsequent to a contraction or shift of their geographic range. Given the already poor conditions of exploited resources, our results suggest the need for fisheries management to adapt to future changes and to incorporate climate change impacts in future management strategy evaluation.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2296-7745 ISBN Médium
Région Expédition Conférence
Notes WOS:000472620400001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2587
Lien permanent pour cet enregistrement
 

 
Auteur Bax, N.J.; Miloslavich, P.; Muller-Karger, F.E.; Allain, V.; Appeltans, W.; Batten, S.D.; Benedetti-Cecchi, L.; Buttigieg, P.L.; Chiba, S.; Costa, D.P.; Duffy, J.E.; Dunn, D.C.; Johnson, C.R.; Kudela, R.M.; Obura, D.; Rebelo, L.-M.; Shin, Y.-J.; Simmons, S.E.; Tyack, P.L.
Titre A Response to Scientific and Societal Needs for Marine Biological Observations Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Front. Mar. Sci.
Volume 6 Numéro Pages
Mots-Clés capacity development; Convention on Biological Diversity (CBD); Essential Ocean Variables (EOV); Global Ocean Observing System (GOOS); Ocean observing; Sustainable Development Goals (SDGs); Un decade for sustainable development
Résumé Development of global ocean observing capacity for the biological EOVs is on the cusp of a step-change. Current capacity to automate data collection and processing and to integrate the resulting data streams with complementary data, openly available as FAIR data, is certain to dramatically increase the amount and quality of information and knowledge available to scientists and decision makers into the future. There is little doubt that scientists will continue to expand their understanding of what lives in the ocean, where it lives and how it is changing. However, whether this expanding information stream will inform policy and management or be incorporated into indicators for national reporting is more uncertain. Coordinated data collection including open sharing of data will help produce the consistent evidence-based messages that are valued by managers. The GOOS Biology and Ecosystems Panel is working with other global initiatives to assist this coordination by defining and implementing Essential Ocean Variables. The biological EOVs have been defined, are being updated following community feedback, and their implementation is underway. In 2019, the coverage and precision of a global ocean observing system capable of addressing key questions for the next decade will be quantified, and its potential to support the goals of the UN Decade of Ocean Science for Sustainable Development identified. Developing a global ocean observing system for biology and ecosystems requires parallel efforts in improving evidence-based monitoring of progress against international agreements and the open data, reporting and governance structures that would facilitate the uptake of improved information by decision makers.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 2296-7745 ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2598
Lien permanent pour cet enregistrement
 

 
Auteur Boavida, J.; Becheler, R.; Choquet, M.; Frank, N.; Taviani, M.; Bourillet, J.-F.; Meistertzheim, A.-L.; Grehan, A.; Savini, A.; Arnaud-Haond, S.
Titre Out of the Mediterranean? Post-glacial colonization pathways varied among cold-water coral species Type Article scientifique
Année (down) 2019 Publication Revue Abrégée J. Biogeogr.
Volume 46 Numéro 5 Pages 915-931
Mots-Clés biodiversity; cold-water corals; computer-program; deep-sea; deep-sea corals; genetic-structure; glacial marine refugia; glacial refugia; growth; in-situ; Last Glacial Maximum; Lophelia pertusa; lophelia-pertusa; Madrepora oculata; marine phylogeography; north-atlantic ocean; software
Résumé Aim: To infer cold-water corals' (CWC) post-glacial phylogeography and assess the role of Mediterranean Sea glacial refugia as origins for the recolonization of the northeastern Atlantic Ocean. Location: Northeastern Atlantic Ocean and Mediterranean Sea. Taxon: Lophelia pertusa, Madrepora oculata. Methods: We sampled CWC using remotely operated vehicles and one sediment core for coral and sediment dating. We characterized spatial genetic patterns (microsatellites and a nuclear gene fragment) using networks, clustering and measures of genetic differentiation. Results: Inferences from microsatellite and sequence data were congruent, and showed a contrast between the two CWC species. Populations of L. pertusa present a dominant pioneer haplotype, local haplotype radiations and a majority of endemic variation in lower latitudes. Madrepora oculata populations are differentiated across the northeastern Atlantic and genetic lineages are poorly admixed even among neighbouring sites. Conclusions: Our study shows contrasting post-glacial colonization pathways for two key habitat-forming species in the deep sea. The CWC L. pertusa has likely undertaken a long-range (post-glacial) recolonization of the northeastern Atlantic directly from refugia located along southern Europe (Mediterranean Sea or Gulf of Cadiz). In contrast, the stronger genetic differentiation of M. oculata populations mirrors the effects of long-term isolation in multiple refugia. We suggest that the distinct and genetically divergent, refugial populations initiated the post-glacial recolonization of the northeastern Atlantic margins, leading to a secondary contact in the northern range and reaching higher latitudes much later, in the late Holocene. This study highlights the need to disentangle the influences of present-day dispersal and evolutionary processes on the distribution of genetic polymorphisms, to unravel the influence of past and future environmental changes on the connectivity of cosmopolitan deep-sea ecosystems associated with CWC.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0305-0270 ISBN Médium
Région Expédition Conférence
Notes WOS:000471344900007 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2602
Lien permanent pour cet enregistrement
 

 
Auteur Cocquempot, L.; Delacourt, C.; Paillet, J.; Riou, P.; Aucan, J.; Castelle, B.; Charria, G.; Claudet, J.; Conan, P.; Coppola, L.; Hocdé, R.; Planes, S.; Raimbault, P.; Savoye, N.; Testut, L.; Vuillemin, R.
Titre Coastal Ocean and Nearshore Observation: A French Case Study Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Front. Mar. Sci.
Volume 6 Numéro Pages Unsp-324
Mots-Clés 2013/2014 winter; atlantic coast; coastal ocean; coastline; diversity; ecosystem; increases; interdisciplinary; national structuration; nutrient ratios; observation infrastructure; phytoplankton community; temperature; variability; wave activity
Résumé To understand and predict the physical, chemical, and biological processes at play in coastal and nearshore marine areas requires an integrated, interdisciplinary approach. The case study of the French structuration of coastal ocean and nearshore observing systems provides an original overview on a federative research infrastructure named ILICO. It is a notable example of national structuration and pan-institution efforts to investigate the forefront of knowledge on the processes at work within the critical coastal zone. ILICO comprises, in a pluridisciplinary approach, eight distributed network-systems of observation and data analysis that are accredited and financially supported by French research institutions and the French Ministry for Higher Education, Research, and Innovation. ILICO observation points are implemented along metropolitan and overseas French coasts, where coastline dynamics, sea level evolution, physical and biogeochemical water properties, coastal water dynamics, phytoplankton composition, and health of coral reefs are monitored in order to address a wide range of scientific questions. To give an overview of the diversity and potential of the observations carried out, this paper offers a detailed presentation of three constituting networks: Service Observation en Milieu LITtoral (SOMLIT), with homogeneous sampling strategies, DYNALIT, with heterogeneous sampling strategies adapted to different environments, and Mediterranean Ocean Observing System for the Environment (MOOSE), an integrated, pluri-disciplinary coasta/offshore regional observatory in the north-western Mediterranean Sea. ILICO was conceived using a European framework. It addresses the great challenges of the next decade in terms of sustainability, cost-efficiency, interoperability, and innovation. This paper emphasizes the added-value of federating these systems, and highlights some recommendations for the future.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN ISBN Médium
Région Expédition Conférence
Notes Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2604
Lien permanent pour cet enregistrement
 

 
Auteur Chao, A.; Chiu, C.-H.; Villeger, S.; Sun, I.-F.; Thorn, S.; Lin, Y.-C.; Chiang, J.-M.; Sherwin, W.B.
Titre An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures Type Article scientifique
Année (down) 2019 Publication Revue Abrégée Ecol. Monogr.
Volume 89 Numéro 2 Pages Unsp-e01343
Mots-Clés attribute diversity; biodiversity; biological diversity; consensus; conservation; differentiation measures; diversity decomposition; evenness; framework; functional (dis)similarity; functional beta diversity; functional diversity; Hill numbers; phylogenetic diversity; quadratic entropy; similarity; species diversity; species richness; species traits; trait diversity
Résumé Based on the framework of attribute diversity (a generalization of Hill numbers of order q), we develop a class of functional diversity measures sensitive not only to species abundances but also to trait-based species-pairwise functional distances. The new method refines and improves on the conventional species-equivalent approach in three areas: (1) the conventional method often gives similar values (close to unity) to assemblages with contrasting levels of functional diversity; (2) when a distance metric is unbounded, the conventional functional diversity depends on the presence/absence of other assemblages in the study; (3) in partitioning functional gamma diversity into alpha and beta components, the conventional gamma is sometimes less than alpha. To resolve these issues, we add to the attribute-diversity framework a novel concept: tau, the threshold of functional distinctiveness between any two species; here, tau can be chosen to be any positive value. Any two species with functional distance >= tau are treated as functionally equally distinct. Our functional diversity quantifies the effective number of functionally equally distinct species (or “virtual functional groups”) with all pairwise distances at least tau for different species pairs. We advocate the use of two complementary diversity profiles (tau profile and q profile), which depict functional diversity with varying levels of tau and q, respectively. Both the conventional species-equivalent method (i.e., tau is the maximum of species-pairwise distances) and classic taxonomic diversity (i.e., tau is the minimum of non-zero species-pairwise distances) are incorporated into our proposed tau profile for an assemblage. For any type of species-pairwise distance matrices, our attribute-diversity approach allows proper diversity partitioning, with the desired property gamma >= alpha and thus avoids all the restrictions that apply to the conventional diversity decomposition. Our functional alpha and gamma are interpreted as the effective numbers of functionally equally distinct species, respectively, in an assemblage and in the pooled assemblage, while beta is the effective number of equally large assemblages with no shared species and all species in the assemblages being equally distinct. The resulting beta diversity can be transformed to obtain abundance-sensitive Sorensen- and Jaccard-type functional (dis)similarity profiles. Hypothetical and real examples are used to illustrate the framework. Online software and R codes are available to facilitate computations.
Adresse
Auteur institutionnel Thèse
Editeur Lieu de Publication Éditeur
Langue English Langue du Résumé Titre Original
Éditeur de collection Titre de collection Titre de collection Abrégé
Volume de collection Numéro de collection Edition
ISSN 0012-9615 ISBN Médium
Région Expédition Conférence
Notes WOS:000477640700001 Approuvé pas de
Numéro d'Appel MARBEC @ isabelle.vidal-ayouba @ collection 2620
Lien permanent pour cet enregistrement